
AntAnt
TechnologyTechnology

Message Push Service
User Guide

Document Version: 20230208

AntAnt
TechnologyTechnology

Message Push Service
User Guide

Document Version: 20230208

Legal disclaimerLegal disclaimer
Ant Group all rights reserved©2022.Ant Group all rights reserved©2022.
No part of this document shall be excerpted, translated, reproduced,
transmitted, or disseminated by any organization, company, or individual in
any form or by any means without the prior written consent of Ant Group.

Trademark statementTrademark statement

and other trademarks related to Ant Group are owned by Ant Group.
The third-party registered trademarks involved in this document are owned by
the right holder according to law.

DisclaimerDisclaimer
The content of this document may be changed due to product version
upgrades, adjustments, or other reasons. Ant Group reserves the right to modify
the content of this document without notice and the updated versions of this
document will be occasionally released through channels authorized by Ant
Group. You must pay attention to the version changes of this document as they
occur and download and obtain the latest version of this document from Ant
Group's authorized channels. Ant Group does not assume any responsibility for
direct or indirect losses caused by improper use of documents.

Message Push Service User Guide··Legal disclaimer

> Document Version: 20230208 I

Document conventions
St yleSt yle Descript ionDescript ion ExampleExample

 DangerDanger
A danger notice indicates a situation that
will cause major system changes, faults,
physical injuries, and other adverse
results.

 Danger:Danger:

Resetting will result in the loss of user
configuration data.

 WarningWarning
A warning notice indicates a situation
that may cause major system changes,
faults, physical injuries, and other adverse
results.

 Warning:Warning:

Restarting will cause business
interruption. About 10 minutes are
required to restart an instance.

 Not iceNot ice
A caution notice indicates warning
information, supplementary instructions,
and other content that the user must
understand.

 Not ice:Not ice:

If the weight is set to 0, the server no
longer receives new requests.

 Not eNot e
A note indicates supplemental
instructions, best practices, t ips, and
other content.

 Not e:Not e:

You can use Ctrl + A to select all files.

>
Closing angle brackets are used to
indicate a multi-level menu cascade.

Click Set t ingsSet t ings > Net workNet work> Set net workSet net work
t ypet ype.

BoldBold
Bold formatting is used for buttons ,
menus, page names, and other UI
elements.

Click OKOK.

Courier font Courier font is used for commands
Run the cd /d C:/window command to
enter the Windows system folder.

Italic Italic formatting is used for parameters
and variables.

bae log list --instanceid

Instance_ID

[] or [a|b]
This format is used for an optional value,
where only one item can be selected.

ipconfig [-all|-t]

{} or {a|b}
This format is used for a required value,
where only one item can be selected.

switch {active|stand}

Message Push Service User Guide··Document convent io
ns

> Document Version: 20230208 I

Table of Contents
1.About Message Push Service

2.Terminology

3.Message push process

4.Client-side development

4.1. Android

4.1.1. Quick start

4.1.2. Process notification clicks

4.1.3. Integrate third-party push channels

4.1.3.1. Integrate HUAWEI Push

4.1.3.2. Integrate OPPO Push

4.1.3.3. Integrate vivo Push

4.1.3.4. Integrate MiPush

4.1.3.5. Integrate FCM push channel

4.1.4. Advanced functions

4.2. iOS

5.Server-side configuration

6.Console operations

6.1. Data overview

6.2. Message management

6.2.1. Create a message - Simple push

6.2.2. Create a message – Multiple push

6.2.3. Manage simple push messages

6.2.4. Manage multiple push messages

6.2.5. Manage scheduled push task

6.3. Message templates

6.3.1. Create a message template

06

09

11

15

15

15

18

21

21

26

28

31

33

35

38

45

46

46

50

50

57

64

65

66

67

67

Message Push Service User Guide··Table of Cont ent s

> Document Version: 20230208 I

6.3.2. Manage message templates

6.4. Message revocation

6.5. User tag management

6.6. Device status query

6.7. Channel configuration

6.8. Key management

7.API reference

7.1. Client APIs

7.2. Server APIs

8.Message conent restrictions

9.FAQ

10.Appendix

10.1. Create an iOS push certificate

10.2. Message push status codes

70

71

73

74

75

80

86

86

89

149

150

154

154

159

Message Push Service User Guide··Table of Cont ent s

> Document Version: 20230208 II

Message Push Service (MPS) provided by mPaaS is a professional mobile message push solut ion and
supports various push types for different scenarios to cater to personalized push requirements. To
improve the arrival rate of pushed messages, mPaaS integrates the push functions of Huawei, Xiaomi
and other vendors in MPS. In addit ion to the capability of quickly pushing messages in the console,
mPaaS provides server-side integration solut ions. With these solut ions, you can quickly integrate the
function of pushing messages to mobile devices to keep interact ions with app users, thereby
effect ively improving the user retention rate and user experience.

FeaturesFeatures
You can init iate various types of message push through MPS. Both self-built and vendors' push channels
are supported. In addit ion, messages can be pushed through the console or APIs. You can select push
types, channels, and modes based on your requirements.

The core functions of MPS are described as follows:

Mult iple push modesMult iple push modes: Messages can be precisely pushed to custom user groups, individual users, or
all users through the MPS console or APIs.

Cust om message validit y periodCust om message validit y period: If a device is offline when a message is sent for the first t ime,
the message can be resent when the device is connected or a user binding request is init iated within
the validity period of the message.

Dif f erent t ypes of push t arget sDif f erent t ypes of push t arget s: You can establish mapping between devices and login users to
push messages by device or user ID.

Personalized message t emplat esPersonalized message t emplat es: On the template management page, you can customize
templates to meet your personalized push requirements.

Usage analysisUsage analysis: Based on tracking logs reported by the client SDK, MPS collects and analyzes push
data from various dimensions including platform, version, push channel, push type, and t ime, and
generates analysis reports. You can view the stat ist ics by minute or other granularity.

Push conf igurat ionPush conf igurat ion: On the push configuration page, you can configure a push cert if icate. For iOS
devices, you can select an Apple APNs gateway based on your requirements.

Channel conf igurat ionChannel conf igurat ion: You can configure third-party push channels to integrate the push
functions provided by Huawei, Xiaomi, and other third-party vendors, thereby improving the arrival
rate of pushed messages.

Key managementKey management : All external APIs of MPS will sign the requests to ensure business security. On the
key configuration page, you can configure keys based on your requirements. In addit ion, the message
receipt function is provided for tracking the message delivery results.

PrinciplePrinciple
In mPaaS, MPS is one of the core basic components that directly interact with clients. It t ransmits
business data related to message not if icat ionsmessage not if icat ions through TCP persistent connection channels or
various phone vendors' push channels.

1.About Message Push Service1.About Message Push Service

Message Push Service User Guide··About Message Push
Service

> Document Version: 20230208 6

The client calls the Remote Procedure Call (RPC) gateway through mPaaS MGS for device registrat ion,
user binding, and third-party channel binding, thereby implementing message push by device and user.
Client behavioral event tracking logs are collected and uploaded based on specificat ions. Based on the
logs, the backend collects and analyzes push data in real t ime and generate stat ist ical reports. MPS
provides two push methods. You can either call APIs on your server based on the business logic to push
personalized messages or directly push messages in the console. To improve the arrival rate of
messages, MPS supports third-party push channels such as those provided by Huawei, Xiaomi, FCM, and
APNs and keeps transparent to backend business systems. In this way, the business systems can focus
on business function implementation, and don’t need to pay attention to device models.

AdvantagesAdvantages
MPS has the following advantages:

Quick and st ableQuick and st able: Messages are delivered quickly and arrive at targets stably.

Easy t o accessEasy t o access: You can complete MPS access efficiently at a low cost.

Quant if ied push ef f ectQuant if ied push ef f ect : The push data stat ist ics function is integrated to intelligently analyze the
arrival rate and open rate of messages. This helps you clearly understand the push effects.

Precise personalized pushPrecise personalized push:

Personalized messages can be precisely pushed from various dimensions such as individual users
and custom user groups.

A push console is provided to meet some simple push requirements. In addit ion, server-side
integration solut ions are provided to implement complex push requirements.

Message receipts are supported to track the message delivery results, improving the user retention
rate and user act iveness effect ively.

Mapping between device IDs and app user IDs is established. The app user name can be directly
used as the message recipient. In this way, messages can accurately arrive at any devices to which
the user logs in.

Application scenariosApplication scenarios
Typical application scenarios for MPS are as follows:

Market ing act ivit iesMarket ing act ivit ies

Message Push Service User Guide··About Message Push
Service

> Document Version: 20230208 7

Push targeted messages to users, including marketing act ivit ies, business reminders, etc., to increase
user st ickiness. By calling the message push API, the app pushes targeted messages to target users to
reach more users in a more act ive way, which attracts user, increases consumption, and improves the
conversion effect of f inal marketing act ivit ies.

Syst em not if icat ionSyst em not if icat ion

According to the business logic of the app server, specify the target user group, and directly push
the message to the target device.

The following push modes are supported to accommodate different application scenarios:

Simple Push: Quickly push messages to a single user or device with simple configuration.

Template Push: Push messages to a single user or device, a message template can be specified, and
the message body is obtained by replacing the template placeholder.

Mult iple Push: Push messages to a number of devices or users , you can specify a message template
and set different placeholder variable values for different devices or users in the configuration file.

Broadcast Push: Push to devices on the entire network, you can specify a message template, the
message body is obtained by replacing the template placeholder.

Message Push Service User Guide··About Message Push
Service

> Document Version: 20230208 8

Terms are listed in an alphabetical order.

Ad-t okenAd-t oken

The unique identifier of Android device, mainly used in client SDK.

Apache Dubbo (Dubbo)Apache Dubbo (Dubbo)

Dubbo is an open source distributed service framework developed by Alibaba, which provides high-
performance RPC invocation, microservice governance and other capabilit ies for interface agents.

AppIdAppId

Application ID, generated when application is created.

Bind-inf oBind-inf o

The mapping relat ion between device token and user ID, in connection with two operations: binding
and unbinding.

Broadcast PushBroadcast Push

Used to push the same message to all devices. The message content is generated by replacing
parameters in template.

Device T okenDevice T oken

The unique identifier of Apple device, provided by iOS system.

MsgkeyMsgkey

Used to uniquely identify a message.

Mult iplePushMult iplePush

Used to push customized message to a large number of targets. The message content is generated by
using the same template and replacing parameters with different content according to different
targets.

Push CertPush Cert

The cert if icat ion, in iOS, used to establish connections with Apple's APNs servers.

SimplePushSimplePush

Used to push the same message to individual target(s).

T aobaoRemot ing (T R)T aobaoRemot ing (T R)

TaobaoRemoting (TR) framework refers to the underlying communication framework developed by Ant
Group for RPC calls.

T arget ID/T okenT arget ID/T oken

The target to push message to, which can be Ad-token of Android, Device Token of iOS or userId and is
determined according to context.

T askNameT askName

Each message push is identified as a task.

T emplat eT emplat e

2.Terminology2.Terminology

Message Push Service User Guide··Terminology

> Document Version: 20230208 9

The framework to generate a message, including attribute configuration of message, message content
and placeholders which can be dynamically replaced.

T emplat ekvT emplat ekv

"k" is the placeholder parameter in template; "v" is the parameter to be replaced.

T emplat e PlaceholderT emplat e Placeholder

The dynamically replaceable parameters in template configuration.

T emplat ePushT emplat ePush

Used to push the same message to individual target(s). The message content is generated by replacing
parameters in template.

UserId/UsrIdUserId/UsrId

Used to identify user, corresponding to device, normally used for binding.

Message Push Service User Guide··Terminology

> Document Version: 20230208 10

After integrating the Message Push Service (MPS), the client uses the mPaaS Mobile Gateway Service to
call the Remote Procedure Call (RPC) gateway for device registrat ion, user binding, and third-party
channel binding, so as to implement message push by devices or users. The message push processes are
different in different device platforms. The following sect ions introduce message push process through
RPC on different device platforms.

Before acquainting yourself with the push process, you need to know some basic concepts involved in
message push.

Basic conceptsBasic concepts
Device ID (t oken)Device ID (t oken): MPS assigns a unique identifier to each client device and determines the target
of message push based on the identifier.

For Android devices, a persistent connection is established for message push.

For iOS devices, the Apple Push Notificat ion service (APNs) is used for message push.

Push modePush mode: MPS provides the following push modes:

Device ID-specif ic pushDevice ID-specif ic push

User ID-specif ic pushUser ID-specif ic push

Broadcast push wit hout specif ying any ident if iersBroadcast push wit hout specif ying any ident if iers

Not eNot e

No matter which mode is adopted, mapped device IDs will be eventually generated inside the
system. User ID-specific message push offers convenience in interworking with your business
systems. As user IDs are eventually mapped to device IDs, you must bind user IDs to device IDs.
The recommended method is to bind the user ID to the corresponding device ID upon user
login. When the user logs out, the binding relat ionship is removed.

T hird-part y pushT hird-part y push: Third-party push refers to pushing by vendors, which can guarantee a high arrival
rate. During the init ializat ion process of calling the init method, the client applies for device IDs
from both mPaaS and the third-party platform. Device IDs are then returned by mPaaS and the third-
party platform in the callback.

If you want to use a third-party push, you should call the report API to upload both mPaaS
device ID and the third-party device ID to Mobile Push Core, and associate the two device IDs. After
the above operation is completed, the third-party device ID can be truly used, otherwise the message
push is a common mPaaS push.

ProcessProcess
The MPS involves two backend systems:

Mobile Push Core (Pushcore)Mobile Push Core (Pushcore): handles service logic and provides APIs to developers.

Mobile Push Gat eway (Mcomet gw)Mobile Push Gat eway (Mcomet gw): maintains persistent connections with Android devices.

3.Message push process3.Message push process

Message Push Service User Guide··Message push proces
s

> Document Version: 20230208 11

Not eNot e

For the devices configured with access to the third-party push platform, such as Xiaomi, Huawei or
other vendors, the client also requests the device ID from the third-party platform. The third-party
push channel is only available after you call the report API to bind the mPaaS device ID and
third-party device ID returned. For general devices, only the device ID returned by mPaaS is used.

Learn about the process for integrating MPS on different device platforms:

Android devices in Chinese mainland

iOS devices and Android devices outside China

Android devices in Chinese mainlandAndroid devices in Chinese mainland
The client uses RPC to directly interact with Mobile Push Core (Pushcore) through the RPC gateway. For
Android devices in China, MPS provides a self-built gateway. The following figure shows the process.

Where,

When the app starts, the client establishes a persistent connection with Mcometgw. If the
connection setup information of the client does not include the device identifier, Mcometgw issues
the device identifier.

If the user enables the MPS from a third-party channel such as Mi and Huawei, and the client is a third-
party device, the third-party SDK init ializes, establishes a persistent connection with the vendor’s
push gateway, and obtains the device ID from the third-party channel.

The app calls the device report RPC API and reports the third-party device information.

The app user init iates a login request on the client.

The server receives the user login request. When successfully logging in to the app, you can send a
user-device binding request to Pushcore.

Message Push Service User Guide··Message push proces
s

> Document Version: 20230208 12

The server init iates a push request.

Pushcore receives the push request, and dist inguishes the message push type.

If the message is pushed by device, Pushcore calls Mcometgw to send the message.

If the message is pushed by user, Pushcore obtains the device ID based on the user ID in the request
and then calls Mcometgw to send the message.

Mcometgw sends the message to the client.

After the message is successfully sent, the client will confirm the receipt of the message with
Mcometgw. If the user has configured a callback API, Pushcore will send a receipt to the server.

When the user act ively logs out of the app, the client calls the unbinding RPC API.

iOS devices and Android devices outside ChinaiOS devices and Android devices outside China
The push gateway for Android devices outside China uses Google Firebase Cloud Messaging (GCM/FCM)
for Android, while the push gateway for iOS devices uses the Apple Push Notificat ion service (APNs).
The following takes the iOS device for example.

The client uses RPC to directly interact with Mobile Push Core (Pushcore) through the RPC gateway. The
following figure shows the process.

Where,

The client obtains the iOS device ID.

The client calls the device report RPC API and reports the device ID to Pushcore through the RPC
gateway.

The app user init iates a login request on the client.

When successfully logging in to the app, the user can call the binding RPC API to send a user-device
binding request to the RPC gateway, which forwards the request to Pushcore.

The server sends a push request to Pushcore.

Message Push Service User Guide··Message push proces
s

> Document Version: 20230208 13

Pushcore receives the push request and dist inguishes the message push type.

If the message is pushed by device, Pushcore directly calls the APNs to send the message.

If the message is pushed by user, Pushcore obtains the device ID based on the user ID in the request
and then calls the APNs to send the message.

After the message is successfully sent, the client will confirm the receipt of the message with
Pushcore. If the user has configured a callback API, Pushcore will send a receipt to the server.

Message Push Service User Guide··Message push proces
s

> Document Version: 20230208 14

This guide briefly describes how to fast integrate MPS to the Android client. You can integrate Message
Push Service (MPS) through Native AAR, mPaaS Inside, or Portal & Bundle method.

The complete integration process mainly includes the following four steps:

1. Add SDK: Add the SDK dependencies and AndroidManifest configuration.

2. Init ialize the SDK: Init ialize the push service to establish persistent connection between the client and
the mobile push gateway.

3. Create a service: Create a service to receive Android device IDs (Ad-tokens), so you can push
messages based on device ID.

4. Bind user ID: Report user ID to the server to bind the user ID and the device ID, so you can push
messages based on the user ID.

PrerequisitesPrerequisites
You have completed the basic configuration with reference to the general operations.

If you integrate MPS through Native AAR, ensure that you have added mPaaS to project.

If you integrate MPS through mPaaS Inside, ensure that you have completed the mPaaS Inside
integration process.

If you integrate MPS in componentized integration mode (through Portal & Bundle projects), ensure
that you have completed the componentized integration process.

You have obtained the .config configuration file from the mPaaS console. For how to generate
and download the configuration file, see Add configuration file to project.

The MPPushMsgServiceAdapter method described in this guide only works in the baseline 10.1.68.32
or later version. If your current baseline version is lower than 10.1.68.32, please refer to mPaaS
upgrade guide to upgrade the baseline version to 10.1.68.32.

Not eNot e

You can continue using the AliPushRcvService method in the earlier version. Click here to
download the documentation about using AliPushRcvService .

ProcedureProcedure
To use MPS, you should complete the following steps.

1. Add MPS SDK.

Add the push SDK dependencies and AndroidManifest configuration.

4.Client-side development4.Client-side development
4.1. Android4.1. Android
4.1.1. Quick start4.1.1. Quick start

Message Push Service User Guide··Client -side developm
ent

> Document Version: 20230208 15

https://gw.alipayobjects.com/os/bmw-prod/af2fd0f5-29b6-40de-a8d8-52e4f209ab59.pdf

i. Add SDK dependencies. Choose an integration method, and complete the required steps
accordingly.

Native AAR: Follow the instruct ions in AAR component management to install the PUSHPUSH
component in the project through Component management (AAR)Component management (AAR).

mPaaS Inside: Install the PUSHPUSH component in the project through Component managementComponent management
(AAR)(AAR). Fore more information, see Add component dependencies.

Componentized integration mode (Portal & Bundle): Install the PUSHPUSH component in the Portal
and Bundle projects through Component management (AAR)Component management (AAR). Fore more information, see
Add component dependencies.

ii. Add AndroidManifest configuration. In the AndroidManifest.xml f ile, add the following
content:

Not eNot e

If you add the SDK through Portal & Bundle, you should add the above content in the Portal
project.

<uses-permission android:name="android.permission.RECEIVE_BOOT_COMPLETED" />

<service
 android:name="com.alipay.pushsdk.push.NotificationService"
 android:enabled="true"
 android:exported="false"
 android:label="NotificationService"
 android:process=":push">
 <intent-filter>
 <action android:name="${applicationId}.push.action.START_PUSHSERVICE" />
 </intent-filter>
</service>
<receiver
 android:name="com.alipay.pushsdk.BroadcastActionReceiver"
 android:enabled="true"
 android:process=":push">
 <intent-filter android:priority="2147483647">
 <action android:name="android.intent.action.BOOT_COMPLETED" />
 <action android:name="android.net.conn.CONNECTIVITY_CHANGE" />
 <action android:name="android.intent.action.USER_PRESENT" />
 <action android:name="android.intent.action.ACTION_POWER_CONNECTED" />
 </intent-filter>
</receiver>

If you don't need to boot the listening system, just delete the following content:

<uses-permission android:name="android.permission.RECEIVE_BOOT_COMPLETED" />
<action android:name="android.intent.action.BOOT_COMPLETED" />

2. Init ialize the SDK.

Init ialize the message push service to establish persistent connection between the client and the
Mobile Push Gateway. The persistent connection is maintained by the SDK, and is regarded as the
self-built channel.

Message Push Service User Guide··Client -side developm
ent

> Document Version: 20230208 16

Native AAR/mPaaS Inside

If you have called the mPaaS init ializat ion method in Application , you can call the following
method behind QuinoxlessFramework.init() :

MPPush.init(this);

If you haven't called the mPaaS init ializat ion method, you can call the following methods in
 Application :

 MPPush.setup(this);
 MPPush.init(this);

Portal & Bundle

In LauncherApplicationAgent or LauncherActivityAgent , call the following method in
 postInit :

MPPush.init(context);

3. Create a service.

Create a service to inherit MPPushMsgServiceAdapter , and override the onTokenReceive method
to receive the device token delivered by the self-built channel.

public class MyPushMsgService extends MPPushMsgServiceAdapter {

 /**
 * Call back upon receiving the token delivered by the self-built channel
 *
 * @param token Device token delivered by the self-built channel
 */
 @Override
 protected void onTokenReceive(String token) {
 Log.d("Receive the token delivered by the self-built channel: " + token);
 }

}

Declare the service in AndroidManifest.xml :

<service
 android:name="com.mpaas.demo.push.MyPushMsgService"
 android:exported="false">
 <intent-filter>
 <action android:name="${applicationId}.push.action.MESSAGE_RECEIVED" />
 <action android:name="${applicationId}.push.action.REGISTRATION_ID" />
 <category android:name="${applicationId}" />
 </intent-filter>
</service>

After you complete this step, you can push messages by device on the console. The device ID
required refers to the token.

4. Bind user ID.

Message Push Service User Guide··Client -side developm
ent

> Document Version: 20230208 17

The user ID is customized by the developer. It can be the user ID of the real user system or other
parameters that can form a mapping relat ionship with users, such as account and mobile phone
number.

After receiving the token, you can bind the token with the user ID:

String userId = "Custom userId";
ResultPbPB bindResult = MPPush.bind(context, userId, token);
Log.d("Bind userId " + (bindResult.success ? "Succeeded" : ("Error:" + bindResult.code)))
;

If you have already set the user ID by calling MPLogger , you don’t have to pass the user ID when
binding it . For example:

MPLogger.setUserId("Custom userId");
ResultPbPB bindResult = MPPush.bind(context, token);

To unbind the user ID, for example, the user exits the app, you can call the following method:

ResultPbPB unbindResult = MPPush.unbind(context, userId, token);
ResultPbPB unbindResult = MPPush.unbind(context, token);

After you complete this step, you can push messages by user on the console. The user ID required
refers to the custom user ID.

Related operationsRelated operations
To improve the message arrival rate, you are recommended to integrate the push channels provided
by Android mobile phone venders. Currently, MPS supports Huawei, Xiaomi, OPPO, and vivo push
channels. For how to access the push channels of those vendors, see Integrate third-party channels.

A notificat ion will be sent automatically when the third-party channel receives the message. The
users can click on the notificat ion to open the Web page. If you need to jump to the in-app page
according to a customized DeepLink, or customize the behavior after receiving the message, see
Process notificat ion click.

For more functions, see Advanced functions.

Sample codeSample code
Click here to download the sample code.

What to do nextWhat to do next
After you successfully integrate MPS to your Android client, you can call the RESTful interface through
the server. For more information, see Configure server > Push messages.

For the apps which have third-party channels integrated and run on the corresponding vendors’ mobile
phones, the server pushes messages through the third-party channels by default; for other apps, the
server pushes messages through the self-built channel.

When self-built channel receives a message, the push SDK automatically deliver a notificat ion, and
the user can click it to open the Web page.

4.1.2. Process notification clicks4.1.2. Process notification clicks

Message Push Service User Guide··Client -side developm
ent

> Document Version: 20230208 18

https://github.com/mpaas-demo/android-push?spm=a2c4g.11186623.2.32.3f5c6fe0GIFBz9

Import antImport ant

Message notificat ion IDs used by the SDK start from 10000. Make sure that other notificat ion IDs
you use do not conflict with them.

To jump to an in-app page, refer to Implement in-app page redirect ion.

To process the received messages by yourself, refer to Implement custom message processing.

After the third-party channel receives a message, the mobile system will automatically deliver a
notificat ion. Neither the push SDK nor developers can interfere. The push SDK can receive the
message and open the Web page only when the user clicks the notificat ion.

To jump to an in-app page, refer to Implement in-app page redirect ion.

To process the redirect ion upon click on message by yourself, refer to Implement custom message
processing.

PrerequisitesPrerequisites
The MPPushMsgServiceAdapter method mentioned in this guide is only applicable for baseline
10.1.68.32 or later version. If your current baseline version is lower than 10.1.68.32, refer to mPaaS
upgrade guide to upgrade the baseline.

You can continue using the AliPushRcvService method in the earlier version. Click here to
download the documentation about using AliPushRcvService .

Implement in-app page redirectionImplement in-app page redirection
If you need to jump to a specific page in the app, you can fill in a custom DeepLink in the redirect ion
address of the message, for example: mpaas://navigate , and set up a routing Act ivity in the app to
receive the DeepLink and then distribute it to other pages.

You also need to add the corresponding intent-filter in AndroidManifest.xml for the routing
Activity, for example:

<activity android:name=".push.LauncherActivity"
 android:launchMode="singleInstance">
 <intent-filter>
 <action android:name="android.intent.action.VIEW" />
 <category android:name="android.intent.category.BROWSABLE" />
 <category android:name="android.intent.category.DEFAULT" />
 <data android:scheme="mpaas" />
 </intent-filter>
</activity>

Obtain URI and message from the routing Act ivity.

Uri uri = intent.getData();
MPPushMsg msg = intent.getParcelableExtra("mp_push_msg");

Implement custom message processingImplement custom message processing
To process the messages by yourself, you can override the onMessageReceive and
 onChannelMessageClick method of MPPushMsgServiceAdapter .

Message Push Service User Guide··Client -side developm
ent

> Document Version: 20230208 19

https://gw.alipayobjects.com/os/bmw-prod/af2fd0f5-29b6-40de-a8d8-52e4f209ab59.pdf

public class MyPushMsgService extends MPPushMsgServiceAdapter {

 /**
 * Callback after the self-built channel receives the message
 *
 * @param msg Message received
 * @return Whether the message has been processed:
 * If true is returned, the SDK will not process the message; the developer needs to pr
ocess the message, including notification delivery and redirection upon click on notificati
on.
 * If false is returned, the SDK will automatically deliver a notification and add the
redirection upon click on notification.
 */
 @Override
 protected boolean onMessageReceive(MPPushMsg msg) {
 Log.d("Receive message through self-built channel:" + msg.toString());
 // Process the message by yourself, such as delivering custom notification
 return true;
 }

 /**
 * Callback after the notification is clicked. The messages delivered through the third
-party channels are displayed on the notification bar.
 *
 * @param msg Message received
 * @return Whether the click on message has been processed:
 * If true is returned, the SDK will not process the click on notification delivered th
rough the third-party channel; the developer needs to process the redirection upon click on
notification.
 * If false is returned, the SDK will automatically process the redirection upon click
on notification.

 */
 @Override
 protected boolean onChannelMessageClick(MPPushMsg msg) {
 Log.d("Message through the third-party channel is clicked:" + msg.toString());
 // Process the logic after the message is clicked by yourself
 return true;
 }

}

 MPPushMsg encapsulates all the parameters of the message:

Message Push Service User Guide··Client -side developm
ent

> Document Version: 20230208 20

String id = msg.getId(); // Message ID
boolean isSilent = msg.isSilent(); // Whether to silence the message

String title = msg.getTitle(); // Message title
String content = msg.getContent(); // Message body

String action = msg.getAction(); // Redirection type, 0: URL, 1: Custom DeepLink
String url = msg.getUrl(); // Redirection address, URL or DeepLink

int pushStyle = msg.getPushStyle(); // Message type, 0: Normal message, 1: Big text, 2: Ric
h text
String iconUrl = msg.getIconUrl(); // Icon of rich text message
String imageUrl = msg.getImageUrl(); // Large image of rich text message

String customId = msg.getCustomId(); // Custom message ID
String params = msg.getParams(); // Extension parameters

After you process the message, you may need to report the following message tracking, otherwise the
MPS usage analysis module on the mPaaS console will not get accurate stat ist ical data.

MPPush.reportPushOpen(msg); // Report that the message was opened
MPPush.reportPushIgnored(msg); // Report that the message was ignored

For the messages delivered through self-built channel:

For silent messages, there is no need to report the message tracking.

For non-silent messages, it is required to report the opened and ignored messages. You can listen the
message opening and ignorance by calling the SetContentIntent and setDeleteIntent
methods of Notification.Builder or through other effect ive methods.

For the messages delivered through the third-party channels, there is no need to report the message
tracking by yourself.

This guide mainly introduces the process of integrating HUAWEI Push. The process falls into three steps:

1. Register HUAWEI Push

2. Integrate HUAWEI Push

3. Test HUAWEI Push

Register HUAWEI PushRegister HUAWEI Push
Visit the Huawei Developer official website, register an account, and enable the push service. For more
information, see Enable HUAWEI Push.

Integrate HUAWEI PushIntegrate HUAWEI Push
MPS supports access to Huawei HMS2 and HMS5. However, you can only select HMS2 or HMS5 in the
process of integrating Huawei push component.

4.1.3. Integrate third-party push channels4.1.3. Integrate third-party push channels

4.1.3.1. Integrate HUAWEI Push4.1.3.1. Integrate HUAWEI Push

Message Push Service User Guide··Client -side developm
ent

> Document Version: 20230208 21

https://developer.huawei.com/consumer/en/doc/development/HMSCore-Guides/android-config-agc-0000001050170137

The HMS2 is obsolete. If you are integrating HUAWEI Push for the first t ime, you are recommended to
integrate HMS5.

If you have upgraded from HMS2 to HMS5, you need to delete the HMS2 AndroidManifest
configuration listed below first .

The following describes the integration methods of Huawei HMS2 and HMS5 respectively.

HUAWEI Push - HMS5.x versionHUAWEI Push - HMS5.x version
1. Add Push - HMS5Push - HMS5 component in the IDE plugin. The steps are roughly the same as adding MPS SDK,

see Add SDK.

Not eNot e

The Push - HMS5 component only contains adaptive codes, without HMS SDK. You can add the
HMS SDK dependencies separately by following the steps below.

2. Download the configuration file agconnect-services.json in the Huawei App Service Console and
place it under the assets directory of the main project.

3. Configure the Maven warehouse address of HMS SDK in the build.gradle f ile in the project root
directory.

 allprojects {
 repositories {
 // Other repos are ignored
 maven {url 'https://developer.huawei.com/repo/'}
 }
 }

4. Add HMS SDK dependencies in the build.gradle f ile of the main project.

 dependencies {
 implementation 'com.huawei.hms:push:5.0.2.300'
 }

The HMS SDK version is updated frequently. For the latest version, refer to HMS SDK Version Change
History.

The current adaptable version is 5.0.2.300. If you need to use a higher version, you can change it by
yourself. Generally, the vendor’s SDK is downward compatible. If it is not compatible, you can
submit a t icket about the adaption issue.

5. To use obfuscation, you need to add the related obfuscation configurations.

No matter which integration method is used in integrating HUAWEI push SDK, you need to add
Huawei push obfuscation rules.

If you integrated HUAWEI push SDK through Native AAR, you need to add mPaaS obfuscation rules.

HUAWEI Push - HMS2.x versionHUAWEI Push - HMS2.x version
1. Add Push - HMS2Push - HMS2 component in the IDE plugin. The steps are roughly the same as adding MPS SDK,

see Add SDK.

The current HMS2 SDK version is V2.5.2.201.

Message Push Service User Guide··Client -side developm
ent

> Document Version: 20230208 22

https://developer.huawei.com/consumer/en/doc/development/HMSCore-Guides-V5/android-app-version-0000001074227861-V5
https://developer.huawei.com/consumer/en/doc/development/HMSCore-Guides/android-config-obfuscation-scripts-0000001050176973?spm=a2c4g.11186623.2.12.14321111Vvkvxp

2. Configure AndroidManifest.xml , and replace the value of com.huawei.hms.client.appid . If you
integrate the MiPush SDK through Portal & Bundle projects, please configure the
 AndroidManifest.xml in the Portal project.

Message Push Service User Guide··Client -side developm
ent

> Document Version: 20230208 23

 <activity
 android:name="com.huawei.hms.activity.BridgeActivity"
 android:configChanges="orientation|locale|screenSize|layoutDirection|fontScale"
 android:excludeFromRecents="true"
 android:exported="false"
 android:hardwareAccelerated="true"
 android:theme="@android:style/Theme.Translucent">
 <meta-data
 android:name="hwc-theme"
 android:value="androidhwext:style/Theme.Emui.Translucent" />
 </activity>
 <!--To prevent dex crashing in an earlier version, dynamically enable provider, and set
"enabled" to false.-->
 <provider
 android:name="com.huawei.hms.update.provider.UpdateProvider"
 android:authorities="${applicationId}.hms.update.provider"
 android:exported="false"
 android:enabled="false"
 android:grantUriPermissions="true">
 </provider>
 <!-- Replace the "appid" of value with the actual app ID in the service details
of the app on Huawei Developer. Keep the slash (\) and space in the value. -->
 <meta-data
 android:name="com.huawei.hms.client.appid"
 android:value="\ your huawei appId" />
 <receiver
 android:name="com.huawei.hms.support.api.push.PushEventReceiver"
 android:exported="true"
 >
 <intent-filter>
 <!-- Receive the notification bar message sent by the channel. It is com
patible with earlier versions of PUSH.-->
 <action android:name="com.huawei.intent.action.PUSH" />
 </intent-filter>
 </receiver>

 <receiver
 android:name="com.alipay.pushsdk.thirdparty.huawei.HuaweiPushReceiver"
 android:exported="true"
 android:process=":push">
 <intent-filter>
 <!-- Required, used for receiving TOKEN. -->
 <action android:name="com.huawei.android.push.intent.REGISTRATION" />
 <!-- Required, used for receiving messages -->
 <action android:name="com.huawei.android.push.intent.RECEIVE" />
 <!-- Optional, used for triggering onEvent callback upon a click on the
notification bar or the button on the notification bar -->
 <action android:name="com.huawei.android.push.intent.CLICK" />
 <!-- Optional, used for checking whether the PUSH channel is connected.
You do not need to configure this parameter if access check is not required -->
 <action android:name="com.huawei.intent.action.PUSH_STATE" />
 </intent-filter>
 </receiver>

Message Push Service User Guide··Client -side developm
ent

> Document Version: 20230208 24

3. To use obfuscation, you need to add the related obfuscation configurations.

If you integrated HUAWEI push SDK through Native AAR, you need to add mPaaS obfuscation rules.

If you integrated HUAWEI push SDK through other methods, you don’t have to add any
obfuscation configuration.

Test HUAWEI PushTest HUAWEI Push
1. After integrating HUAWEI Push, you can start the app on your Huawei phone, and the MPS SDK will

automatically get the HUAWEI Push token and report it . Before you start the app, make sure that you
have called the init ializat ion method, see Message push init ializat ion.

2. Push test messages when the app process is killed:

If you can st ill receive the messages, it means that the app has successfully integrated HUAWEI
Push.

If you cannot receive the messages, you can follow the steps below for troubleshooting.

TroubleshootingTroubleshooting
1. Check if the Huawei configuration and parameters are consistent with that in the Huawei push

backend.

For HMS2, check if AndroidManifest.xml has related configurations added, and check if
 com.huawei.hms.client.appid is same as that in Huawei push backend.

For HMS5, check if agconnect-services.json exists, and the file is correctly placed.

2. Check if HUAWEI Push is enabled in the mPaaS console (see Configure HUAWEI Push), and the relevant
configurations are consistent with that on Huawei push backend.

3. View the logs in Logcat to troubleshoot:

i. Select the push process, f ilter mPush.PushProxyFactory , and check if the following log exists:

D/mPush.PushProxyFactory: found proxy com.mpaas.push.external.hms.Creator (HMS2)
D/mPush.PushProxyFactory: found proxy com.mpaas.push.external.hms5.Creator (HMS5)

If not, it means that there may be a problem with the Push - HMS2 or Push - HMS5 component.
Check if the component has been correctly added.

ii. Select the main process, f ilter mHMS , and check if the channel token of HUAWEI Push has been
obtained. If the following log (get token failed) appears:

It means the system failed to get the channel token, see HUAWEI Push Result Codes for the failure
reason.

Message Push Service User Guide··Client -side developm
ent

> Document Version: 20230208 25

https://developer.huawei.com/consumer/en/doc/development/HMSCore-References-V5/error-code-0000001050255690-V5?spm=a2c4g.11186623.2.28.68ac1781avgDVc

iii. Select the main process, f ilter report channel token , check if the channel token of HUAWEI
Push has been successfully reported. If the following log appears:

report channel token error: xxxx

It means the channel token report ing failed, you need to check if the base64Code in the mPaaS
configuration file has a value, and check if the apk signature that you uploaded when obtaining
the configuration file is consistent with the app.

4. If the above steps do not resolve the issue, please search for the group number 31591197 with
DingTalk to join DingTalk group for further communication.

Other questionsOther questions

Does MPS has any version restrictions on EMUI and Huawei mobileDoes MPS has any version restrictions on EMUI and Huawei mobile
servicesservices
There are version restrict ions on Emotion UI (EMUI for short, it is an Android-based emotional operating
system developed by Huawei) and Huawei mobile services.

For detailed version requirements, see Condit ions for devices to receive Huawei notificat ions.

Failed to print logs for Huawei mobile phonesFailed to print logs for Huawei mobile phones
On the dialing interface of the Huawei mobile phone, enter ## #2846579### to enter ProjectProject menu >
Background set t ingsBackground set t ings > LOG set t ingsLOG set t ings and select AP LogsAP Logs. After the phone restarts, Logcat will start
to take effect.

This guide mainly introduces the process of integrating OPPO Push. The process falls into three steps:

1. Register OPPO Push

2. Integrate OPPO Push

3. Test OPPO Push

Register OPPO PushRegister OPPO Push
Register an account on the OPPO Developers Platform and request to Integrate the push service with
reference to Opening OPPO PUSH Service Guideline.

Integrate OPPO PushIntegrate OPPO Push
1. Add Push - OPPOPush - OPPO component in the IDE plugin. The steps are roughly the same as adding MPS SDK,

see Add SDK.

The component only contains adaptive codes, without OPPO Push SDK. You can add the OPPO Push
SDK dependencies separately by following the steps below.

2. Download OPPO Push SDK from OPPO PUSH Client SDK Interface Document and integrate the SDK to
the main project.

The current adaptable version is V2.1.0. If you need to use a higher version, you can change it by
yourself. Generally, the vendor’s SDK is downward compatible. If it is not compatible, you can submit
a t icket about the adaption issue.

4.1.3.2. Integrate OPPO Push4.1.3.2. Integrate OPPO Push

Message Push Service User Guide··Client -side developm
ent

> Document Version: 20230208 26

https://developer.huawei.com/consumer/en/doc/development/HMS-Guides/push-faq-v4#restrictions
https://developers.oppomobile.com/wiki/doc/index#id=88
https://developers.oppomobile.com/wiki/doc/index#id=80
https://developers.oppomobile.com/wiki/doc/index#id=74

3. Configure AndroidManifest.xml , and replace the value of com.oppo.push.app_key . If you
integrate the MiPush SDK through Portal & Bundle projects, please configure the
 AndroidManifest.xml in the Portal project.

 <uses-permission android:name="com.coloros.mcs.permission.RECIEVE_MCS_MESSAGE" />
 <uses-permission android:name="com.heytap.mcs.permission.RECIEVE_MCS_MESSAGE"/>

 <application>
 <service
 android:name="com.heytap.msp.push.service.CompatibleDataMessageCallbackServi
ce"
 android:exported="true"
 android:permission="com.coloros.mcs.permission.SEND_MCS_MESSAGE"
 android:process=":push">
 <intent-filter>
 <action android:name="com.coloros.mcs.action.RECEIVE_MCS_MESSAGE"/>
 </intent-filter>
 </service>

 <service
 android:name="com.heytap.msp.push.service.DataMessageCallbackService"
 android:exported="true"
 android:permission="com.heytap.mcs.permission.SEND_PUSH_MESSAGE"
 android:process=":push">
 <intent-filter>
 <action android:name="com.heytap.mcs.action.RECEIVE_MCS_MESSAGE"/>
 <action android:name="com.heytap.msp.push.RECEIVE_MCS_MESSAGE"/>
 </intent-filter>
 </service>
 <meta-data
 android:name="com.oppo.push.app_key"
 android:value="Obtained from the OPPO Developers platform"
 />
 <meta-data
 android:name="com.oppo.push.app_secret"
 android:value="Obtained from the OPPO Developers platform"
 />
 </application>

4. To use obfuscation, you need to add the related obfuscation configurations.

No matter which integration method is used in integrating OPPO push SDK, you need to add OPPO
push obfuscation rules.

If you integrated OPPO push SDK through Native AAR, you need to add mPaaS obfuscation rules..

Test OPPO PushTest OPPO Push
1. After integrating OPPO Push, you can start the app on your OPPO phone, and the MPS SDK will

automatically get the OPPO Push token and report it . Before you start the app, make sure that you
have called the init ializat ion method, see Message push init ializat ion.

2. Push test messages when the app process is killed:

If you can st ill receive the messages, it means that the app has successfully integrated OPPO Push.

Message Push Service User Guide··Client -side developm
ent

> Document Version: 20230208 27

https://open.oppomobile.com/wiki/doc?spm=a2c4g.11186623.2.13.4ee73801sPPrMI#id=10875

If you cannot receive the messages, you can follow the steps below for troubleshooting.

TroubleshootingTroubleshooting
1. Check if AndroidManifest.xml has related configurations added, and check if the values of

 com.oppo.push.app_key and com.oppo.push.app_secret are the same as that on OPPO
Developers Platform.

2. Check if OPPO Push is enabled in the mPaaS console (see Configure OPPO Push), and the relevant
configurations are consistent with that on OPPO Developers Platform.

3. View the logs in Logcat to troubleshoot:

i. Select the push process, f ilter mPush.PushProxyFactory , and check if the following log exists:

D/mPush.PushProxyFactory: found proxy com.mpaas.push.external.oppo.Creator

If not, it means that there may be a problem with the Push - OPPO component. Check if the
component has been correctly added.

ii. Select the push process, f ilter mOPPO , and check if the channel token of OPPO Push has been
obtained. If the following log (neither OPPO onRegister error nor responseCode is 0) appears:

It means the OPPO Push registrat ion failed. See OPPO Push Error Codes for the failure reason.

iii. Select the main process, f ilter report channel token , check if the channel token of OPPO Push
has been successfully reported. If the following log appears:

report channel token error: xxxx

It means the channel token report ing failed, you need to check if the base64Code in the mPaaS
configuration file has a value, and check if the apk signature that you uploaded when obtaining
the configuration file is consistent with the app.

iv. Select the push process, f ilter mcssdk , and view the internal logs of OPPO Push.

4. If the above steps do not resolve the issue, please search for the group number 31591197 with
DingTalk to join DingTalk group for further communication.

Other questionsOther questions

Mobile models and OS versions supported by OPPO PushMobile models and OS versions supported by OPPO Push
Currently, OPPO phone models running ColorOS 3.1 and newer systems, OnePlus 5/5T and newer phone
models, and all realme phone models are supported by OPPO Push.

ColorOS is a Android-based highly-customized, efficient, intelligent, and richly-designed mobile
operating system developed by OPPO.

4.1.3.3. Integrate vivo Push4.1.3.3. Integrate vivo Push

Message Push Service User Guide··Client -side developm
ent

> Document Version: 20230208 28

https://open.oppomobile.com/wiki/doc#id=10875

This guide mainly introduces the process of integrating vivo Push. The process falls into three steps:

1. Register vivo Push

2. Integrate vivo Push

3. Test vivo Push

Register vivo PushRegister vivo Push
Register an account on the vivo Developers Platform and request to integrate the push service with
reference to vivo Push Platform Operation Guide.

Integrate vivo PushIntegrate vivo Push
1. Add Push - vivoPush - vivo component in the IDE plugin. The steps are roughly the same as adding MPS SDK,

see Add SDK.

The component has integrated the vivo Push SDK V2.3.4. You can upgrade the vivo Push SDK on
demand. Generally, the vendor's SDK is downward compatible. If it is not compatible, you can submit
a t icket about the adaption issue.

2. Configure AndroidManifest.xml , and replace the values of com.vivo.push.api_key and
 com.vivo.push.app_id . If you integrate the vivo Push SDK through Portal & Bundle projects, please

configure the AndroidManifest.xml in the Portal project.

 <application>
 <service
 android:name="com.vivo.push.sdk.service.CommandClientService"
 android:process=":push"
 android:exported="true" />
 <activity
 android:name="com.vivo.push.sdk.LinkProxyClientActivity"
 android:exported="false"
 android:process=":push"
 android:screenOrientation="portrait"
 android:theme="@android:style/Theme.Translucent.NoTitleBar" />
 <meta-data
 android:name="com.vivo.push.api_key"
 android:value="Provided by vivo Developers Platform" />
 <meta-data
 android:name="com.vivo.push.app_id"
 android:value="Provided by vivo Developers Platform" />
 </application>

3. To use obfuscation, you need to add the related obfuscation configurations.

No matter which integration method is used in integrating vivo push SDK, you need to add vivo
push obfuscation rules.

If you integrated vivo push SDK through Native AAR, you need to add mPaaS obfuscation rules.

Test vivo PushTest vivo Push
1. After integrating vivo Push, you can start the app on your vivo phone, and the MPS SDK will

automatically get the OPPO Push token and report it . Before you start the app, make sure that you
have called the init ializat ion method, see Message push init ializat ion.

2. Push test messages when the app process is killed:

Message Push Service User Guide··Client -side developm
ent

> Document Version: 20230208 29

https://dev.vivo.com.cn/documentCenter/doc/180
https://dev.vivo.com.cn/documentCenter/doc/151
https://dev.vivo.com.cn/documentCenter/doc/365

If you can st ill receive the messages, it means that the app has successfully integrated vivo Push.

If you cannot receive the messages, you can follow the steps below for troubleshooting.

TroubleshootingTroubleshooting
1. Check if AndroidManifest.xml has related configurations added, and check if the values of

 com.vivo.push.api_key and com.vivo.push.app_id are the same as that on vivo Developers
Platform.

2. Check if vivo Push is enabled in the mPaaS console (see Configure vivo Push), and the relevant
configurations are consistent with that on vivo Developers Platform.

3. View the logs in Logcat to troubleshoot:

i. Select the push process, f ilter mPush.PushProxyFactory , and check if the following log exists:

D/mPush.PushProxyFactory: found proxy com.mpaas.push.external.vivo.Creator

If not, it means that there may be a problem with the Push - vivo component. Check if the
component has been correctly added.

ii. Select the push process, f ilter mVIVO , and check if the channel token of vivo Push has been
obtained. If the following log (“fail to turn on vivo push”) appears:

It means the vivo Push registrat ion failed, see vivo Push Error Codes.

iii. Select the main process, f ilter report channel token , check if the channel token of vivo Push
has been successfully reported. If the following log appears:

report channel token error: xxxx

It means the channel token report ing failed, you need to check if the base64Code in the mPaaS
configuration file has a value, and check if the apk signature that you uploaded when obtaining
the configuration file is consistent with the app.

4. If the above steps do not resolve the issue, please search for the group number 31591197 with
DingTalk to join DingTalk group for further communication.

FAQFAQ

Models and OS versions supported by vivo PushModels and OS versions supported by vivo Push
The models and earlier system versions supported by vivo Push are listed in the following table. For
other questions on vivo Push, see vivo Push FAQs.

Message Push Service User Guide··Client -side developm
ent

> Document Version: 20230208 30

https://dev.vivo.com.cn/documentCenter/doc/368
https://dev.vivo.com.cn/documentCenter/doc/156#w1-08608733

This guide mainly introduces the process of integrating MiPush. The process falls into three steps:

1. Register MiPush

2. Integrate MiPush

3. Test MiPush

Register MiPushRegister MiPush
Complete MiPush registrat ion with reference to the following official Xiaomi documents:

Register a Xiaomi developer account

Enable MiPush

Integrate MiPushIntegrate MiPush

4.1.3.4. Integrate MiPush4.1.3.4. Integrate MiPush

Message Push Service User Guide··Client -side developm
ent

> Document Version: 20230208 31

https://global.developer.mi.com/document?doc=accountRegistration.becomeADeveloper
https://dev.mi.com/console/doc/detail?pId=68

1. Add Push - XiaomiPush - Xiaomi component in the IDE plugin. The steps are roughly the same as adding MPS SDK,
see Add SDK. Currently, the built-in MiPush SDK is V4.0.2. You can see Release notes to learn the
historical versions.

2. Configure AndroidManifest.xml , and replace the values of xiaomi_appid and
 xiaomi_appkey . If you integrate the MiPush SDK through Portal & Bundle projects, please configure

the AndroidManifest.xml in the Portal project.

 <permission
 android:name="${applicationId}.permission.MIPUSH_RECEIVE"
 android:protectionLevel="signature"/>
 <uses-permission android:name="${applicationId}.permission.MIPUSH_RECEIVE"/>
 <application>

 <!-- Keep the slash (\) and space in the value -->
 <meta-data
 android:name="xiaomi_appid"
 android:value="\ 2xxxxxxxxxxxxxxx" />
 <!-- Keep the slash (\) and space in the value -->
 <meta-data
 android:name="xiaomi_appkey"
 android:value="\ 5xxxxxxxxxxxxxxx" />

 </application>

Test MiPushTest MiPush
1. After integrating MiPush, you can start the app on your Xiaomi phone, and the MPS SDK will

automatically get the MiPush token and report it . Before you start the app, make sure that you have
called the init ializat ion method, see Message push init ializat ion.

2. Push test messages when the app process is killed:

If you can st ill receive the messages, it means that the app has successfully integrated MiPush.

If you cannot receive the messages, you can follow the steps below for troubleshooting.

TroubleshootingTroubleshooting
1. Check if AndroidManifest.xml has been configured, and the values of xiaomi_appid and

 xiaomi_appkey in the file are consistent with that on Mi Developer Platform.

2. Check if MiPush is enabled in the mPaaS console (see Configure Xiaomi push channel), and the
relevant configurations are consistent with that on Mi Developer Platform.

3. View the logs in Logcat to troubleshoot:

i. Select the push process, f ilter mPush.PushProxyFactory , and check if the following log exists:

D/mPush.PushProxyFactory: found proxy com.mpaas.push.external.mi.Creator

If not, it means that there may be a problem with the Push - Xiaomi component. Check if the
component has been correctly added.

Message Push Service User Guide··Client -side developm
ent

> Document Version: 20230208 32

ii. Select the push , f ilter mMi , and check if the MiPush channel token has been obtained.

If the following log (register_fail) appears, it means the MiPush registrat ion failed. See MiPush error
codes for the failure reason (reason). If the value of reason is UNKNOWN, it is generally due
to incorrect xiaomi_appid or xiaomi_appkey . To learn about the result codes
(resultCode), see MiPush server error codes.

iii. Select the main process, f ilter report channel token , check if the MiPush channel token has
been successfully reported. If the following log appears:

report channel token error: xxxx

It means the channel token report ing failed, you need to check if the base64Code in the mPaaS
configuration file has a value, and check if the apk signature that you uploaded when obtaining
the configuration file is consistent with the app.

4. If the above steps do not resolve the issue, please search for the group number 31591197 with
DingTalk to join DingTalk group for further communication.

MPS supports integrating the Firebase Cloud Messaging (FCM) push channel to sat isfy the message push
requirements on overseas Android devices.

The following sect ions describe how to integrate the FCM push channel.

PrerequisitesPrerequisites
Before you integrate FCM, ensure that the following condit ions are met:

Adopt native AAR integration mode. mPaaS Inside and Portal & Bundle integration modes don't work
for FCM.

Gradle must be 4.1 or later versions.

AndroidX is used.

 com.android.tools.build:gradle must be 3.2.1 or a later version.

 compileSdkVersion must be 28 or a later version.

Integrate FCM SDKIntegrate FCM SDK
Perform the following steps:

1. Add your app in the Firebase console.

Log on to the Firebase console and register your app. See Firebase documentation.

2. Add the Firebase Android configuration file to your app.

Download the configuration file google-services.json and move the file to the main module of
your project.

4.1.3.5. Integrate FCM push channel4.1.3.5. Integrate FCM push channel

Message Push Service User Guide··Client -side developm
ent

> Document Version: 20230208 33

https://dev.mi.com/console/doc/detail?pId=41#_2_1
https://dev.mi.com/console/doc/detail?spm=a2c4g.11186623.0.0.2a671c84xJ8kXs&pId=1557
https://firebase.google.com/docs/cloud-messaging/android/client

3. Add the Google service plug-in to the buildScript dependency in the root-level build.gradle
file.

 buildscript {

 repositories {
 // Check that you have the following line (if not, add it):
 google() // Google's Maven repository
 }

 dependencies {
 // ...

 // Add the following line:
 classpath 'com.google.gms:google-services:4.3.4' // Google Services plugin
 }
 }

 allprojects {
 // ...

 repositories {
 // Check that you have the following line (if not, add it):
 google() // Google's Maven repository
 // ...
 }
 }

4. Apply the Google service plug-in in the build.gradle f ile of the main module.

 apply plugin: 'com.android.application'
 // Add the following line:
 apply plugin: 'com.google.gms.google-services' // Google Services plugin

 android {
 // ...
 }

5. Add the FCM SDK dependency to the build.gradle f ile of the main module.

 dependencies {
 // Import the BoM for the Firebase platform
 implementation platform('com.google.firebase:firebase-bom:26.1.1')

 // Declare the dependencies for the Firebase Cloud Messaging and Analytics libraries
 // When using the BoM, you don't specify versions in Firebase library dependencies
 implementation 'com.google.firebase:firebase-messaging'
 implementation 'com.google.firebase:firebase-analytics'
 }

Integrate mPaaSIntegrate mPaaS
Perform the following steps:

1. Add the FCM Adapter dependency to the build.gradle f ile of the main module.

Message Push Service User Guide··Client -side developm
ent

> Document Version: 20230208 34

Add the FCM Adapter dependency to the build.gradle f ile of the main module.

 dependencies {
 implementation 'com.mpaas.push:fcm-adapter:0.0.2'
 }

2. Integrate the MPS SDK, with reference to the requirements on mPaaS baseline:

For com.mpaas.push:fcm-adapter:0.0.2 , the baseline must be 10.1.68.34 or later version.

For com.mpaas.push:fcm-adapter:0.0.1 , the baseline must be 10.1.68.19 or later version.

3. Receive push messages.

Due to the features of FCM SDK, the messages pushed through the FCM channel may not always be
received by the client through the FCM channel, but may be received through the self-built channel.
The specific rules are:

If the app is in frontend, the messages are passed through to the app by FCM, and the app will
receive the message through the self-built channel.

If the app is in backend or the app is killed, the messages are sent through FCM channel, and are
displayed on the notificat ion bar.

4. (Optional) You can register a message receiver to obtain an error message when the FCM init ializat ion
fails. For details, see Error codes.

Refer to the following sample code:

 <receiver android:name=".push.FcmErrorReceiver" android:exported="false">
 <intent-filter>
 <action android:name="action.mpaas.push.error.fcm.init" />
 </intent-filter>
 </receiver>

 package com.mpaas.demo.push;

 import android.content.BroadcastReceiver;
 import android.content.Context;
 import android.content.Intent;
 import android.widget.Toast;

 public class FcmErrorReceiver extends BroadcastReceiver {
 @Override
 public void onReceive(Context context, Intent intent) {
 String action = intent.getAction();
 if ("action.mpaas.push.error.fcm.init".equalsIgnoreCase(action)) {
 Toast.makeText(context, "fcm error " + intent.getIntExtra("error", 0), Toast
.LENGTH_SHORT).show();
 }
 }
 }

After integrating the push SDK, you can also perform the following client configuration:

Clear notificat ion badges

4.1.4. Advanced functions4.1.4. Advanced functions

Message Push Service User Guide··Client -side developm
ent

> Document Version: 20230208 35

https://developers.google.com/android/reference/com/google/android/gms/common/ConnectionResult

Report third-party channel tokens

Customize Notificat ionChannel

PrerequisitesPrerequisites
The MPPushMsgServiceAdapter method mentioned in this guide is only applicable for baseline
10.1.68.32 or later version. If your current baseline version is lower than 10.1.68.32, refer to mPaaS
upgrade guide to upgrade the baseline.

You can continue using the AliPushRcvService method in the earlier version. Click here to
download the documentation about using AliPushRcvService .

Clear notification badgesClear notification badges
For third-party channels, you can enable that a badge appears on the app icon when users receive
messages. Currently, the push SDK only supports automatic badge clearance for Huawei channel.

To clear the app badge automatically when users click the notificat ion, perform the following
sett ings:

 // Set whether to clear automatically
 boolean autoClear = true;
 MPPush.setBadgeAutoClearEnabled(context, autoClear);
 // Set the Activity name of the app entrance. If not set, badges cannot be cleared
 String activityName = "com.mpaas.demo.push.LauncherActivity";
 MPPush.setBadgeActivityClassName(context, activityName);

In the scenario that the badge cannot be cleared automatically, for example, the user act ively clicks
the app icon to enter the app, you can call the following method in Application to act ively clear
the badge:

 MPPush.clearBadges(context);

Report third-party channel tokensReport third-party channel tokens
With the third-party channels integrated, the push SDK will receive the third-party channel token after
init ializat ion, automatically bind it with the self-built channel token, and report the tokens.

If necessary, you can override the onChannelTokenReceive and onChannelTokenReport methods of
 MPPushMsgServiceAdapter to listen the delivery and report of third-party channel tokens.

Message Push Service User Guide··Client -side developm
ent

> Document Version: 20230208 36

https://gw.alipayobjects.com/os/bmw-prod/af2fd0f5-29b6-40de-a8d8-52e4f209ab59.pdf

public class MyPushMsgService extends MPPushMsgServiceAdapter {

 /**
 * Callback for the reception of third-party channel token
 *
 * @param channelToken Third-party channel token
 * @param channel Third-party channel type
 */
 @Override
 protected void onChannelTokenReceive(String channelToken, PushOsType channel) {
 Log.d("Receive third-party channel token: " + channelToken);
 Log.d("Vendor: " + channel.getName());
 }

 /**
 * Callback for the report of third-party channel token
 *
 * @param result Report result
 */
 @Override
 protected void onChannelTokenReport(ResultBean result) {
 Log.d("Report third-party channel token " + (result.success ? "Succeeded" : ("Error
:" + result.code)));
 }

 /**
 * Whether to report the third-party channel token automatically
 *
 * @return If false is returned, you can report the token by yourself
 */
 @Override
 protected boolean shouldReportChannelToken() {
 return super.shouldReportChannelToken();
 }

}

To bind the tokens and report them by yourself, you can override the shouldReportChannelToken
method and return false . You must call the following method after receiving the two tokens.

MPPush.report(context, token , channel.value(), channelToken);

Customize NotificationChannelCustomize NotificationChannel
To customize the name and descript ion of NotificationChannel for the self-built channel, you can
add the following content in the AndroidManifest.xml f ile:

Message Push Service User Guide··Client -side developm
ent

> Document Version: 20230208 37

<meta-data
 android:name="mpaas.notification.channel.default.name"
 android:value="Name" />
<meta-data
 android:name="mpaas.notification.channel.default.description"
 android:value="Description" />

This guide introduces how to integrate MPS to iOS client. You can integrate MPS to iOS client based on
native project with CocoaPods.

Not eNot e

Since June 28, 2020, mPaaS has stopped support for the baseline 10.1.32. Please use 10.1.68 or
10.1.60 instead. For how to upgrade the baseline from version 10.1.32 to 10.1.68 or 10.1.60, see
mPaaS 10.1.68 upgrade guide or mPaaS 10.1.60 upgrade guide.

PrerequisitesPrerequisites
You have integrated your project to mPaaS. For more information, refer to Integrate based on native
framework and using Cocoapods.

ProcedureProcedure
To use MPS, you should complete the following steps.

1. Use CocoaPods plugin to add the MPS SDK.

i. In the Podfile file, use mPaaS_pod "mPaaS_Push" to add dependency.

ii. Execute pod install to complete integrating the SDK.

2. Configure the project.

Enable the following functions in the T ARGET ST ARGET S directory of your project:

4.2. iOS4.2. iOS

Message Push Service User Guide··Client -side developm
ent

> Document Version: 20230208 38

Capabilit iesCapabilit ies > Push Not if icat ionsPush Not if icat ions

Capabilit iesCapabilit ies > Background ModesBackground Modes > Remot e not if icat ionsRemot e not if icat ions

3. Use the SDK. In the case of using CocoaPods to access the iOS client based on an exist ing project, you
need to complete the following operations.

Message Push Service User Guide··Client -side developm
ent

> Document Version: 20230208 39

i. (Optional) Register device token.

The message push SDK will automatically request the registrat ion of deviceToken when the
application is started. Generally, you do not need to request the registrat ion of deviceToken. But in
special cases (such as when there is privacy control at startup, when all network requests are
blocked), you need to trigger the registrat ion of deviceToken again after the control and
authorization. The sample code is as follows:

- (void)registerRemoteNotification
{
 // Push notification registration
 if ([[[UIDevice currentDevice] systemVersion] floatValue] >= 10.0) {// 10.0+
 UNUserNotificationCenter* center = [UNUserNotificationCenter currentNotificatio
nCenter];
 center.delegate = self;
 [center getNotificationSettingsWithCompletionHandler:^(UNNotificationSettings *
_Nonnull settings) {

 [center requestAuthorizationWithOptions:(UNAuthorizationOptionAlert|UNA
uthorizationOptionSound|UNAuthorizationOptionBadge)
 completionHandler:^(BOOL granted, NSError * _Null
able error) {
 // Enable or disable features based on authorization.
 if (granted) {
 dispatch_async(dispatch_get_main_queue(), ^{
 [[UIApplication sharedApplication] registerForRemoteNotific
ations];
 });
 }
 }];

 }];
 } else {// 8.0,9.0
 UIUserNotificationSettings *settings = [UIUserNotificationSettings settingsForT
ypes:(UIUserNotificationTypeBadge
|UIUserNotificationTypeSound|UIUserNotificationTypeAlert) categories:nil];
 [[UIApplication sharedApplication] registerUserNotificationSettings:settings];
 [[UIApplication sharedApplication] registerForRemoteNotifications];
 }
}

Message Push Service User Guide··Client -side developm
ent

> Document Version: 20230208 40

ii. Obtain the device token and bind it with user ID.Obtain the device token and bind it with user ID.

The message push SDK provided by mPaaS encapsulates the logicThe message push SDK provided by mPaaS encapsulates the logic
of registering with the APNs server. After the program starts, theof registering with the APNs server. After the program starts, the
Push SDK automatically registers with the APNs server. You canPush SDK automatically registers with the APNs server. You can
obtain the deviceToken issued by APNs in the callback method ofobtain the deviceToken issued by APNs in the callback method of
successful registration, and then call the interface method ofsuccessful registration, and then call the interface method of
PushService to report the binding userId to the mobile push core.PushService to report the binding userId to the mobile push core.

// import <PushService/PushService.h>
- (void)application:(UIApplication *)application didRegisterForRemoteNotificationsWithD
eviceToken:(NSData *)deviceToken
{
 [[PushService sharedService] setDeviceToken:deviceToken];
 [[PushService sharedService] pushBindWithUserId:@"your userid(to be replaced)" comp
letion:^(NSException *error) {
 }];

}

The push SDK also provides the API - (void)pushUnBindWithUserId:(NSString *)userId
completion:(void (^)(NSException *error))completion; for unbinding the device token from
the user ID of the app. For example, you can call the unbind API after the user switches to another
account.

iii. Receive push messages.Receive push messages.

After the client receives the pushed message, if the user clicks toAfter the client receives the pushed message, if the user clicks to
view it, the system will start the corresponding application. Theview it, the system will start the corresponding application. The
logic processing after receiving the push message can be done inlogic processing after receiving the push message can be done in
the callback method of the callback method of AppDelegate ..

Message Push Service User Guide··Client -side developm
ent

> Document Version: 20230208 41

In the system versions earlier than iOS 10, the methods ofIn the system versions earlier than iOS 10, the methods of
processing notification bar messages or silent messages are asprocessing notification bar messages or silent messages are as
follows:follows:

 // Cold start for push messages in system versions earlier than iOS 10
 - (BOOL)application:(UIApplication *)application didFinishLaunchingWithOptions:(NSD
ictionary *)launchOptions {
 NSDictionary *userInfo = [launchOptions objectForKey: UIApplicationLaunchOptionsRem
oteNotificationKey];
 if ([[[UIDevice currentDevice] systemVersion] doubleValue] < 10.0) {
 // Cold start for push messages in system versions earlier than iOS 10
 }

 return YES;
 }

 // When the app runs in the foreground, adopt the method of processing common push
messages; when the app runs in the background or foreground, adopt the method of proc
essing silent messages ; when the app version is earlier than iOS 10, adopt the metho
d of processing notification bar messages
 -(void)application:(UIApplication *)application didReceiveRemoteNotification:(NSDic
tionary *)userInfo fetchCompletionHandler:(void (^)(UIBackgroundFetchResult result))c
ompletionHandler
 {
 // Process received messages
 }

On iOS 10 and above, you need to implement the following delegate methods to listen for
notificat ion bar messages:

Message Push Service User Guide··Client -side developm
ent

> Document Version: 20230208 42

 // Register UNUserNotificationCenter delegate
 if ([[[UIDevice currentDevice] systemVersion] doubleValue] >= 10.0) {
 UNUserNotificationCenter* center = [UNUserNotificationCenter currentNotific
ationCenter];
 center.delegate = self;
 }

 // Receive remote push messages when the app runs in the foreground
 - (void)userNotificationCenter:(UNUserNotificationCenter *)center willPresentNotifi
cation:(UNNotification *)notification withCompletionHandler:(void (^)(UNNotificationP
resentationOptions options))completionHandler
 {
 NSDictionary *userInfo = notification.request.content.userInfo;

 if([notification.request.trigger isKindOfClass:[UNPushNotificationTrigger class
]]) {
 // Receive remote push messages when the app runs in the foreground

 } else {
 // Receive local push messages when the app runs in the foreground

 }
 completionHandler(UNNotificationPresentationOptionNone);
 }

 // Receive remote push messages when the app runs in the background or uses cold st
art mode
 - (void)userNotificationCenter:(UNUserNotificationCenter *)center didReceiveNotific
ationResponse:(UNNotificationResponse *)response withCompletionHandler:(void(^)(void)
)completionHandler
 {
 NSDictionary *userInfo = response.notification.request.content.userInfo;

 if([response.notification.request.trigger isKindOfClass:[UNPushNotificationTrig
ger class]]) {
 // Receive remote push messages when the app runs in the background or uses
cold start mode

 } else {
 // Receive local push messages when the app runs in the foreground

 }
 completionHandler();

 }

Message Push Service User Guide··Client -side developm
ent

> Document Version: 20230208 43

iv. Calculate message open rate.

In order to count the open rate of messages on the client side, you need to call the
 pushOpenLogReport interface of PushService (available in versions 10.1.32 and above) to

report the message open event when the app message is opened by the user. After the event is
reported, you can view the stat ist ics of the message open rate on the Message PushMessage Push > OverviewOverview
page in the mPaaS console.

/**
 * Enable the API for reporting push messages so that the message open rate can be calc
ulated.
 * @param userInfo userInfo of a message
 * @return
 */
- (void)pushOpenLogReport:(NSDictionary *)userInfo;

4. Configure a push cert if icate.

To push messages through the MPS console of mPaaS, you need to configure an APNs push
cert if icate in the console. This cert if icate must match the signature on the client. Otherwise, the
client cannot receive push messages.

For more information about the configuration, see Configure an iOS push cert if icate.

Follow-up stepsFollow-up steps
After an APNs cert if icate is configured on the MPS console of mPaaS, messages can be pushed to
applications in devicedevice dimension. MPS pushes messages to clients through Apple APNs. For more
information, see Push process for Apple devices and Android devices outside China.

After user IDs are reported and the server binds them with device tokens, messages can be pushed to
applications in useruser dimension.

Code sampleCode sample
Click here to download the code sample.

Related topicsRelated topics
Create a message

Configure the server

Message Push Service User Guide··Client -side developm
ent

> Document Version: 20230208 44

https://github.com/mpaas-demo/ios-push?spm=a2c4g.11186623.2.15.40556fe0bjccoZ

After learning about the message push process of Mobile Push Service, you need to configure signature
verificat ion, bind users and devices, and push messages.

PrerequisitesPrerequisites
You have act ivated mPaaS.

You have a server-side application.

You have reported the user ID and device ID on client.

ProcedureProcedure

Step 1: Bind users and devicesStep 1: Bind users and devices
When obtaining the user ID and device ID reported by client, the server calls the interface provided by
mobile push service to complete binding.

For more information about interfaces, see Client APIs or Server APIs.

Step 2: Push messagesStep 2: Push messages
Server can push the following four types of messages by calling interfaces:

Simple Push: Push simple messages.

Template Push: Push templated messages.

Mult iple Push: Push different messages to different targets.

Broadcast Push: Push message to all users.

5.Server-side configuration5.Server-side configuration

Message Push Service User Guide··Server-side configura
t ion

> Document Version: 20230208 45

Import antImport ant : Since June 28, 2020, mPaaS has stopped support for the baseline 10.1.32. Please use 10.1.68 or
10.1.60 instead. For how to upgrade the baseline from version 10.1.32 to 10.1.68 or 10.1.60, see mPaaS
10.1.68 upgrade guide (Android/iOS) or mPaaS 10.1.60 upgrade guide (Android/iOS).

MPS provides stat ist ics on message push data including pushed messages, successfully pushed
messages, message arrivals, opened messages, and ignored messages, and supports filtering the data
by platform, version, push channel, push type, and other criteria, and export ing the data reports.

PrerequisitesPrerequisites
You have integrated MPS SDK based on the mPaaS framework.

You have completed client tracking by referring to the following topics. All data involved in usage
analysis are collected from the SDK tracking logs.

Android: Report push data

iOS: Calculate message open rate

Not eNot e

For iOS devices, currently you can only collect the message open rate.

View push dataView push data
To view the stat ist ical data about MPS usage, you should complete the following steps:

1. Log in to the mPaaS console, select the target app, and enter the Message Push ServiceMessage Push Service >
OverviewOverview page.

2. Set f ilter criteria to query stat ist ical data. You can filter by plat f ormplat f orm, versionversion, push channelpush channel, pushpush
t ypet ype, and t imet ime, or input a complete task ID to search.

Not eNot e

Searching data with task ID only works for messages delivered through mult iple push. You can
view the task ID on the Mult iple push recordsMult iple push records page.

Platform: The options include All plat f ormsAll plat f orms, Android - workspaceIdAndroid - workspaceId, and iOS - workspaceIdiOS - workspaceId.
Available options depend on the exist ing push platforms with message push and the push console
which launches message push. For example, if no message has been pushed to iOS devices, the iOSiOS
- workspaceId- workspaceId option is unavailable. In these options, workspaceId indicates the workspace ID of
the push console.

Version: The value depends on tracking log reported by the client SDK. MPS gets the app version
based on MAS stat ist ics.

6.Console operations6.Console operations
6.1. Data overview6.1. Data overview

Message Push Service User Guide··Console operat ions

> Document Version: 20230208 46

Push channel: The options include All push channelsAll push channels, MPS self -built channelMPS self -built channel, and T hird-part yT hird-part y
channelchannel (such as MIUI, HMS, vivo, OPPO and iOS). Only when any message push through the push
channel occurred, the corresponding option is available. For example, if no message has been
pushed through MIUI (MiPush) channel, the MIUIMIUI option is unavailable.

Push type: The options include All push t ypesAll push t ypes, Simple push - non-t emplat e basedSimple push - non-t emplat e based, SimpleSimple
push - t emplat e basedpush - t emplat e based, Mult iple push - all devicesMult iple push - all devices, and Mult iple push - not all devicesMult iple push - not all devices.
Only when message push of the push type occurred, the corresponding option is available. For
example, if no template-based simple push occurred, the corresponding option is unavailable.

Time range: A maximum of 90 days is allowed.

Core metricsCore metrics
Display the crit ical push data within a certain period, including the pushed messages, successfully
pushed messages, message arrivals, opened messages, ignored messages, etc.

Met ricsMet rics Descript ionDescript ion

Message Push Service User Guide··Console operat ions

> Document Version: 20230208 47

Pushed messages
The total number of messages pushed by the backend, which is
counted by backend.

Successfully pushed messages

MPS automatically collects statistics on the actual number of
messages that have been pushed in the specified time period, which is
counted by backend. The statistics doesn't care whether the messages
were pushed within the specified time period.

One push task may contain multiple target IDs, and MPS needs to
push a message to each of these targets.

If a token has expired or a user binding relationship does not exist,
the target ID is invalid and MPS will not count the messages pushed
to this target.

Message arrivals

The actual number of messages that have arrived at the client, which is
counted by client. The statistics doesn’t care whether the messages
were pushed within the specified time period.

For example, if the message arrivals during 2021.8.1 ~ 2021.8.7 is 100, it
means 100 pieces of messages arrived at client during the period.
Among those 100 pieces of messages, some may be pushed before
August 1.

The data statistics varies with the push channels:

Android self-built channel: After messages are successfully pushed
to devices, statistics are collected based on tracking log data
reported by the client SDK.

iOS and Android third-party channels: After messages are pushed
through specified channels, statistics are collected based on push
results returned by backend services of these channels.

Arrival rate Arrival rate = (Message arrivals/Pushed messages) × 100%.

Opened messages

The actual number of messages that have been opened on the client,
which is counted by client. The value depends on tracking log data
reported by the client SDK. MPS obtains the number of opened
messages based on MAS statistics. The statistics doesn't care whether
the messages arrived at client within the specified time period.

For example, if the number of opened messages during 2021.8.1 ~
2021.8.7 is 88, it means 88 pieces of messages were opened by users
during the period. Among those 88 pieces of messages, some may
have arrived at client before August 1.

Open rate Open rate = (Opened messages/Message arrivals) × 100%

Met ricsMet rics Descript ionDescript ion

Message Push Service User Guide··Console operat ions

> Document Version: 20230208 48

Ignored messages

The number of messages that are manually ignored by users on the
client. The statistics doesn't care whether the messages arrived at
client within the specified time period. The value depends on tracking
log data reported by the client SDK. MPS obtains the number of
ignored messages based on MAS statistics.

For example, if the number of ignored messages during 2021.8.1 ~
2021.8.7 is 66, it means 66 pieces of messages were manually ignored
by users during the period. Among those 66 pieces of messages, some
may have arrived at client before August 1.

Ignorance rate Ignorance rate = (Ignored messages/Message arrivals) × 100%

Met ricsMet rics Descript ionDescript ion

Data trendData trend
Message push stat ist ical data is presented in a line chart. You can click the metric legend under the
chart to hide or display the curve of a metric.

In the upper left corner of the chart, you can select Query by quant it yQuery by quant it y or Query by rat eQuery by rat e to view the
metric stat ist ics in quantity or rate curves.

Query by quantity: Displays curves of pushed, arrived, opened, and ignored messages.

Query by rate: Displays curves of the arrival rate, open rate, and ignorance rate.

In the upper right corner of the chart, you can select a granularity to display the chart by minute, hour,
or day.

Minut esMinut es: The horizontal axis displays the t ime points (accurate to minutes) of pushed, arrived,
opened, and ignored messages.

HoursHours: The horizontal axis displays the t ime points (accurate to hours) of pushed, arrived, opened,
and ignored messages.

DaysDays: The horizontal axis displays the t ime points (accurate to days) of pushed, arrived, opened, and
ignored messages.

Not eNot e

If you set a duration longer than one day, Minut esMinut es and HoursHours will be unavailable.

Push detailsPush details
Daily or hourly push details listed in the table are consistent with data displayed in the core metric
chart.

The t ime points in the T imeT ime column are obtained from the horizontal axis of the core metric chart.

The list contains the following core metrics: pushed messasges, successfully pushed messages,
message arrivals (arrival rate), opened messages (open rate), and Ignored messages (ignorance rate).

Click ExportExport in the upper right corner to download the corresponding data.

6.2. Message management6.2. Message management

Message Push Service User Guide··Console operat ions

> Document Version: 20230208 49

Import antImport ant

Since March 18th, 2022, mPaaS MPS console has been upgraded. On the new console, the push
types have been integrated and optimized from the previous four types (simple push, template
push, mult iple push and broadcast push) to two types (simple push and mult iple push). The
upgraded simple push covers the capabilit ies of the original simple push and template push; the
upgraded mult iple push covers the capabilit ies of the original mult iple push and broadcast push.

Simple push refers to pushing a message to an individual user or device. When you pushing messages in
this mode, you can either customize messages or create messages based on a predefined message
template.

Customizing message is applicable for the scenarios of pushing messages to a few targets, such as
verifying the validity of Apple Push cert if icate and checking whether the Android Push SDK is correctly
integrated. The message template is suitable for the scenario of pushing messages to mult iple targets
in mult iple t imes. That is to verify and test the template function by creating a template-based
message through the console before the template function is automatically or widely used.

Not eNot e

The messages are pushed immediately after they are created. You cannot delete or modify
them.

Since manual operations are required, we recommend you push messages through the
console in the scenarios requiring low-frequency message push, such as system verificat ion,
operation support, and temporary emergency requirement.

The following sect ions describe how to create a simple push message in the console.

PrerequisitesPrerequisites
To push messages to iOS devices, you should have integrated MPS iOS SDK (see Integrate iOS SDK)
and configured the iOS push cert if icate on the Channel Channel conf igurat ionconf igurat ion page in the mPaaS console.
For more information, see Configure iOS push channel.

To push messages through the Android vendor channels (also known as third-party channels), you
should have integrated MPS Android SDK (see Integrate Android SDK), integrated relevant vendor
channels (see Integrate vendor push channels) and completed corresponding push channel sett ing
on the Channel Channel conf igurat ionconf igurat ion page in the mPaaS console. For more information, see Channel
configuration.

ProcedureProcedure
1. Log in to the mPaaS console, select the target app, and go to the Message Push ServiceMessage Push Service >

Message managementMessage management page.

2. Click the Creat e message push t askCreat e message push t ask button, and in the pop-up dialog box, select the Simple pushSimple push
tab.

6.2. Message management6.2. Message management
6.2.1. Create a message - Simple push6.2.1. Create a message - Simple push

Message Push Service User Guide··Console operat ions

> Document Version: 20230208 50

3. On the simple push tab page, configure the basic information of the message. The configuration
items are as follows:

Paramet erParamet er RequiredRequired Descript ionDescript ion

Message type:
silent message

Yes

Whether to display the message:

YesYes : Indicates that the message will not be displayed in
any form on the target device, and user has no sense about
it.

NoNo : Indicates that the message will be displayed in the
notification bar.

For Android devices, you need to perform different operations
according to the push channel that you have selected:

MPS channelMPS channel: This parameter is sent to the client as a
reference field. You need to parse the message body and
get the content of this field, then control the display of the
message.

Vendor channelVendor channel: This parameter is sent to the target
device as a field. The device vendor's system will then
parse the content of this field, and control the display of
the message. You do not need to perform any other
operations.

For iOS devices, the display of messages is controlled by the
device vendor’s system. You do not need to perform any
other operations.

Message content
creation method

Yes

Create the message in either of the following ways:

Creat eCreat e: Customizes message content, including message
title, body and the presentation style.

Use a t emplat eUse a t emplat e: Uses the predefined template.

Template Yes

Choose a message template from templates listed on the
Message t emplat es Message t emplat es page.

Not eNot e

It is required only when you choose to create the
message based on a template.

Template
placeholder

Yes
Enter variable values in the template. The system provides
configuration options for placeholders in the selected
template.

Message Push Service User Guide··Console operat ions

> Document Version: 20230208 51

Push dimension Yes

Select the message delivery mode:

UsersUsers : Push messages by user ID. You need to call the bind
API to bind the user ID with device ID. For more information
about the binding API, see Client APIs.

AndroidAndroid: Push messages by Android device ID.

iOSiOS: Push messages by iOS device ID.

User ID/Device ID Yes

Input the corresponding user ID or device ID according to the
push dimension you chose.

When the push dimension is Android, input the Ad-token.

When the push dimension is iOS, input the Device Token.

When the push dimension is user, input the actual user ID,
that is the value of userid passed in when you called
the binding API.

If there is any space in the device ID obtained from sources
such as logs, you need to delete the space.

Push priority of
Android message
channels

Yes

Only available for Android push platform.

Vendor channels pref erredVendor channels pref erred: Vendor channels are
preferred. If vendor channels are integrated, messages are
pushed through the corresponding vendor channels; if no
vendor channel is integrated to the app, the messages are
pushed through MPS self-built channel.

MPS channelMPS channel: MPS uses the self-built channel to push
messages.

For Android devices, this parameter specifies whether to push
messages through an MPS self-built channel or vendor
channel. For iOS devices, you do not need to set this
parameter (iOS push belongs to vendor channel push).

Paramet erParamet er RequiredRequired Descript ionDescript ion

Message Push Service User Guide··Console operat ions

> Document Version: 20230208 52

Display style Yes

The style that how the message is displayed on the client.
You can choose any one of the following three styles: Default
(short text), Big text, and Rich text.

Def aultDef ault : This style is suitable for messages with concise
and clear content. The message of this style contains t it le
and text only. It is recommended to keep the length of the
message text within 100 characters, including custom
parameters and symbols.

Big t extBig t ext : This style is suitable for messages with long
text, such as information and news messages, so users can
quickly obtain information without opening the application.
The message of this style contains t it le and text only. It is
recommended to keep the length of the message text
within 256 characters, including custom parameters and
symbols.

Rich t extRich t ext : This style supports the messages containing
icon and image, suitable for the messages with various
content. To ensure good message presentation effect, it is
better to keep the text within two lines.

Message tit le Yes
Enter the t it le of the message with no more than 200
characters. The message display effect can be previewed in
the preview area.

Message content Yes
Enter the message boy with no more than 200 characters. The
message display effect can be previewed in the preview area.

Paramet erParamet er RequiredRequired Descript ionDescript ion

Message Push Service User Guide··Console operat ions

> Document Version: 20230208 53

Icon No

The icon displayed on the right of the message, which can be
JPG, JPEG or PNG image. Enter the public accessible URL of the
icon here.

If you only provide the default icon URL while no materials are
uploaded for the corresponding vendor channels, the default
icon will be automatically pulled and used for the messages
pushed through the vendor channels. Since the vendor
channels have different requirements on the icon material, it is
suggested to upload the material for each vendor channel
separately according to their requirements.

Def ault iconDef ault icon: The suggested size is 140 * 140px, not
exceeding 50 KB.

OPPO iconOPPO icon: The suggested size is 140 * 140px, not
exceeding 50 KB.

Xiaomi iconXiaomi icon: The suggested size is 120 * 120px, not
exceeding 50 KB.

Huawei iconHuawei icon: The suggested size is 40 * 40dp, not
exceeding 512 KB.

FCM iconFCM icon: If no specific requirement applies, the default
icon will be automatically used.

Large image No

The image displayed at the lower part of the message, which
can be JPG, JPEG or PNG image. Enter the public accessible URL
of the image here.

If you only provide the default image URL while no materials
are uploaded for the corresponding vendor channels, the
default large image will be automatically pulled and used for
the messages pushed through the vendor channels. Since the
vendor channels have different requirements on the image, it
is suggested to upload the material for each vendor channel
separately according to their requirements.

Def ault large imageDef ault large image: The suggested size is 876 * 324px,
not exceeding 1 MB.

OPPO large imageOPPO large image: The suggested size is 876 * 324px,
not exceeding 1 MB.

Xiaomi large imageXiaomi large image: The suggested size is 876 * 324px,
not exceeding 1 MB.

iOS large imageiOS large image: Supports custom images, without
limitation on image size.

FCM large imageFCM large image: If no specific requirement applies, the
default image will be automatically used.

Paramet erParamet er RequiredRequired Descript ionDescript ion

Message Push Service User Guide··Console operat ions

> Document Version: 20230208 54

Push mode Yes

Select the t ime to push message:

NowNow : Push the message immediately once the message
push task is created.

ScheduledScheduled: Specify a t ime to push the message. For
example, push the message at 8:00 am on June 19th.

CyclicCyclic: Push the message at a specific t ime cyclically within
a period. For example, push the message at 8:00 am every
Friday from June 1st to September 30th.

Paramet erParamet er RequiredRequired Descript ionDescript ion

The preview area is on the right side of the message creation window. To preview the message
display effects for different platforms respectively, click Not if icat ionNot if icat ion, iOS message bodyiOS message body and
Android message bodyAndroid message body.

4. (Optional) Configure the advanced information on demand. In the Advanced inf ormat ionAdvanced inf ormat ion area,
complete the following configurations:

Redirect upon clickRedirect upon click: Specify the operation to be performed after a user taps the message on
the phone. This parameter is sent to the client as a reference field. You need to implement
subsequent operations by referring to the field.

Web pageWeb page: Users will be redirected to a Web page.

Cust om pageCust om page: Users will be redirected to a native page.

Redirect ion addressRedirect ion address: The page to be visited after a user taps the message on the mobile phone.
Enter the address according to the option you chose.

For Web page, enter the URL of the web page to be visited.

For custom page, enter the address of the native page to be visited (Android: Act ivityName;
iOS: VCName).

Cust om message IDCust om message ID: Custom message ID is automatically generated by the system to uniquely
identify the message in the client 's system. It can be customized and a maximum of 64 characters
are allowed.

Not eNot e

Custom message ID is required for silent message only.

Valid periodValid period: Specify the valid period of the message in seconds. To ensure the message arrival
rate, when a message fails to be sent because the device is offline or the user is logged out, MPS
will resend it after the device is connected or a user binding request is init iated within the validity
period of the message. It is 180 seconds by default .

Not eNot e

The valid period cannot be shorter than 180 seconds or longer than 72 hours.

Message Push Service User Guide··Console operat ions

> Document Version: 20230208 55

Ext ension paramet ersExt ension paramet ers: Turn the switch on, click Add paramet erAdd paramet er, set the key/value, and left
click on any area of the page to complete sett ing. The extension parameters are passed to the
client together with the message body for your use.

Extension parameters include the following three types:

System extension parameters

These extension parameters are occupied by the system, and cannot be modified. System
extension parameters include notifyType , action , silent , pushType ,
 templateCode , channel , and taskId .

System extension parameters with some significance

These extension parameters are occupied by the system and have some significance. You can
configure values of these extension parameters.

For more information about these parameters, see the following table.

Paramet erParamet er Descript ionDescript ion

sound
The custom ringtone of the message. The value of this parameter
is the path of the ringtone. This parameter is only valid for Xiaomi
phones and iPhones.

badge

Badge number. Its value is a specific number. This extension
parameter will be passed to the client together with the message
body.

For Android devices, you need to implement the badge logic by
yourself.

For iOS devices, iOS system automatically implements the
badge logic. When a message is pushed to the target mobile
phone, the number that you specified in value appears in the
badge of the app icon.

mutable-content

The APNs custom push identifier. If a pushed message carries this
parameter, it indicates that the
 UNNotificationServiceExtension of iOS10 is supported,

otherwise it is a normal push. The value is set to 1.

badge_add_num Accumulative badge number, only available in Huawei channel.

badge_class
Activity class corresponding to the desktop app icon in Huawei
channel.

big_text Big text style, the value is fixed to 1, and other values are invalid.
This parameter is only valid for Xiaomi and Huawei phones.

Message Push Service User Guide··Console operat ions

> Document Version: 20230208 56

User-defined extension parameters

All other parameters than system extension parameters and system extension parameters with
some significance are user-defined extension parameters. User-defined extension parameters
are passed to the client together with the message body for your use.

5. Click SubmitSubmit to complete creating the message. The new message will appear in the simple push
records.

In addit ion to console operation, you can also push messages by calling relevant APIs. For more
information, see Server APIs.

Relevant operationsRelevant operations
Create a message – Mult iple push

Call API to push messages

Manage messages

Import antImport ant

Since March 18th, 2022, mPaaS MPS console has been upgraded. On the new console, the push
types have been integrated and optimized from the previous four types (simple push, template
push, mult iple push and broadcast push) to two types (simple push and mult iple push). The
upgraded simple push covers the capabilit ies of the original simple push and template push; the
upgraded mult iple push covers the capabilit ies of the original mult iple push and broadcast push.

Mult iple push is mainly used to push messages to a large number of users to meet some operation
needs.

The mult iple push falls into network-wide push and non network-wide push.

Network-wide push refers to pushing the same template-based message to all Android and iOS
networking devices, which only supports pushing by devices.

When you push a message to Android devices, all the Android devices that are connected in the
message validity period can receive the message; when you push a message to iOS devices, all the
iOS devices that are bound in the message validity period can receive the message.

Non network-wide push refers to pushing the same template-based message to specified user
groups.

You can manually upload a group of message receivers, customize tagged user groups, or use the
MAS groups.

Not eNot e

The messages are pushed immediately after they are created. You cannot delete or modify
them.

Since manual operations are required, we recommend you push messages through the
console in the scenarios requiring low-frequency message push, such as system verificat ion,
operation support, and temporary emergency requirement.

6.2.2. Create a message – Multiple push6.2.2. Create a message – Multiple push

Message Push Service User Guide··Console operat ions

> Document Version: 20230208 57

The following sect ions describe how to create a mult iple push message in the console.

PrerequisitesPrerequisites
To push messages to iOS devices, you should have integrated MPS iOS SDK (see Integrate iOS SDK)
and configured the iOS push cert if icate on the Channel conf igurat ionChannel conf igurat ion page in mPaaS console. For
more information, see Configure iOS push channel.

To push messages through the Android vendor channels (also known as third-party channels), you
should have integrated MPS Android SDK (see Integrate Android SDK), accessed relevant vendor
channels (see Inegrate vendor push channels) and completed corresponding push channel sett ing on
the Channel conf igurat ionChannel conf igurat ion page in mPaaS console. For more information, see Channel
configuration.

Before creating a mult iple push task, you need to prepare a template. For how to create a template,
see Create a message template.

When you create a mult iple push task, if you choose to call the MAS group as the target audiences,
you should create a MAS group in advance. For details, see Create user groups. If you choose a
tagged user group as the target audiences, you should create a tagged user group in advance. For
details, see Create a user tag.

ProcedureProcedure
1. Log in to the mPaaS console, select the target app, and go to the Message Push ServiceMessage Push Service >

Message managementMessage management page.

2. Click the Creat e message push t askCreat e message push t ask button, and in the pop-up dialog box, select the Mult ipleMult iple
pushpush tab.

3. On the mult iple push tab page, configure the basic information of the message. The configuration
items are as follows:

Parameter Required Description

Message Push Service User Guide··Console operat ions

> Document Version: 20230208 58

Message type:
silent message

Yes

Whether to display the message:

YesYes : Indicates that the message will not be displayed in
any form on the target device, and user has no sense about
it.

NoNo : Indicates that the message will be displayed in the
notification bar.

For Android devices, you need to perform different operations
according to the push channel that you have selected:

MPS channelMPS channel: This parameter is sent to the client as a
reference field. You need to parse the message body and
get the content of this field, then control the display of the
message.

Vendor channelVendor channel: This parameter is sent to the target
device as a field. The device vendor's system will then
parse the content of this field, and control the display of
the message. You do not need to perform any other
operations.

For iOS devices, the display of messages is controlled by the
device vendor’s system. You do not need to perform any
other operations.

Push dimension Yes

Select the message delivery mode:

UsersUsers : Push messages by user ID. You need to call the bind
API to bind the user ID with device ID. For more information
about the binding API, see Client APIs.

DevicesDevices : Push messages by device ID.

Push platform Yes

When you choose the push dimension as DevicesDevices , you need
to select a push platform to specify the type of the target
device.

AndroidAndroid: MPS provides vendor channels and MPS self-build
channel to push the message to the network-wide online
Android devices (in valid period) or specified Android
devices. The message will be pushed only once for each
device.

iOSiOS: Use the vendor channel to push the message to the
network-wide or specified iOS devices. The message will be
pushed only once for each device.

When you choose the push dimension as UsersUsers , you have
the following options:

Message Push Service User Guide··Console operat ions

> Document Version: 20230208 59

Select push
targets Yes

Upload a groupUpload a group: Upload the file containing target IDs
and the personalized configuration of each target ID
based on the selected template. Every data record in the
file represents a message, which is identified by a
customer message ID. Requirements for the file format
are as follows:

The format of each data record: target
ID,customer message ID,placeholder
1=XXX;placeholder 2=XXX… , where the customer
message ID can be user customized.

The file encoding type must be UTF-8 and the
maximum file size is 200 MB. Separate multiple data
records with line breaks. Each data record must be
1~250 characters in length. Only one file can be
uploaded in one push task.

After a file is successfully uploaded, its icon is
displayed below the UploadUpload button. You can preview
up to 10 data records of the file by clicking the icon.

MAS groupMAS group: Call the MAS group and push the same
message to the specified group users. You need to
create a MAS group first. For details, see Create user
groups. If the message template includes any
placeholder, this option is unavailable.

User t agsUser t ags : Select the target groups by tag. You should
create a tagged user group first. For details, see Create a
user tag.

When you choose the push dimension as DevicesDevices , you have
the following options:

All devicesAll devices : Push the message to all devices of the
selected platform.

Part ial devicesPart ial devices : Upload the file containing target IDs
and the personalized configuration of each target ID
based on the selected template. Every data record in the
file represents a message, which is identified by a
customer message ID. Requirements for the file format
are as follows:

The format of each data record: target
ID,customer message ID,placeholder
1=XXX;placeholder 2=XXX… , where the customer
message ID can be user customized.

The file encoding type must be UTF-8 and the
maximum file size is 200 MB. Separate multiple data
records with line breaks. Each data record must be
1~250 characters in length. Only one file can be
uploaded in one push task.

After a file is successfully uploaded, its icon is
displayed below the UploadUpload button. You can preview
up to 10 data records of the file by clicking the icon.

Message Push Service User Guide··Console operat ions

> Document Version: 20230208 60

MAS groupMAS group: Call the MAS group and push the same
message to the specified group users. You need to
create a MAS group first. For details, see Create user
groups. If the message template includes any
placeholder, this option is unavailable.

Template Yes
Choose a message template from templates listed on the
Message t emplat es Message t emplat es page.

Template
placeholder

Yes
Enter variable values in the template. The system provides
configuration options for placeholders in the selected
template.

Push priority of
Android message
channels

Yes

Only available for Android push platform.

Vendor channels pref erredVendor channels pref erred: Vendor channels are
preferred. If vendor channels are integrated, messages are
pushed through the corresponding vendor channels; if no
vendor channel is integrated to the app, the messages are
pushed through MPS self-built channel.

MPS channelMPS channel: MPS uses the self-built channel to push
messages.

For Android devices, this parameter specifies whether to push
messages through an MPS self-built channel or vendor
channel. For iOS devices, you do not need to set this
parameter (iOS push belongs to vendor channel push).

Push mode Yes

Select the t ime to push message:

NowNow : Push the message immediately once the message
push task is created.

ScheduledScheduled: Specify a t ime to push the message. For
example, push the message at 8:00 am on June 19th.

CyclicCyclic: Push the message at a specific t ime cyclically within
a period. For example, push the message at 8:00 am every
Friday from June 1st to September 30th.

Message Push Service User Guide··Console operat ions

> Document Version: 20230208 61

The preview area is on the right side of the message creation window. To preview the message
display effects for different platforms respectively, click Not if icat ionNot if icat ion, iOS message bodyiOS message body and
Android message bodyAndroid message body.

4. (Optional) Configure the advanced information on demand. In the Advanced inf ormat ionAdvanced inf ormat ion area,
complete the following configurations:

Redirect upon clickRedirect upon click: Specify the operation to be performed after a user taps the message on
the phone. This parameter is sent to the client as a reference field. You need to implement
subsequent operations by referring to the field.

Web pageWeb page: Users will be redirected to a Web page.

Cust om pageCust om page: Users will be redirected to a native page.

Redirect ion addressRedirect ion address: The page to be visited after a user taps the message on the mobile phone.
Enter the address according to the option you chose.

For Web page, enter the URL of the web page to be visited.

For custom page, enter the address of the native page to be visited (Android: Act ivityName;
iOS: VCName).

Login st at usLogin st at us: Specify target users according to login status. When you select the login/logout
period, PermanentPermanent means no t ime limit , namely pushing messages to all login/logout users.

Import antImport ant

Login status is unconfigurable when you use Android push platform and push messages
through MPS self-built channel.

If you select Login usersLogin users, MPS will push messages to the users who logged in to the App in the
specified t ime period. For example, if the login period is 15 days, it means pushing messages to
the users who logged in to the App in recent 15 days.

If you select Logout usersLogout users, MPS will push messages to the users who logged out from the App
in the specified t ime period. For example, if the logout period is 15 days, it means pushing
messages to the users who logged out in recent 15 days.

If you select both Login usersLogin users and Logout usersLogout users, MPS will push messages to the users who
logged in to the App and logged out in the specified t ime period. For example, if the login
period is permanent while the logout period is 7 days, it means pushing messages to all login
users and the users who logged out in recent 7 days.

Cust om message IDCust om message ID: Custom message ID is automatically generated by the system to uniquely
identify the message in the client 's system. It can be customized and a maximum of 64 characters
are allowed.

Valid periodValid period: Specify the valid period of the message in seconds. It is 180 seconds by default . To
ensure the message arrival rate, when a message fails to be sent because the device is offline or
the user is logged out, MPS will resend it after the device is connected or a user binding request is
init iated within the validity period of the message.

Ext ension paramet ersExt ension paramet ers: Turn the switch on, click Add paramet erAdd paramet er, set the key/value, and left
click on any area of the page to complete sett ing. The extension parameters are passed to the
client together with the message body for your use.

Extension parameters include the following three types:

Message Push Service User Guide··Console operat ions

> Document Version: 20230208 62

System extension parameters

These extension parameters are occupied by the system, and cannot be modified. System
extension parameters
include notifyType , action , silent , pushType , templateCode , channel ,
and taskId .

System extension parameters with some significance

These extension parameters are occupied by the system and have some significance. You can
configure values of these extension parameters.

For more information about these parameters, see the following table.

Parameter Description

sound
The custom ringtone of the message. The value of this parameter is the
path of the ringtone. This parameter is only valid for Xiaomi phones and
iPhones.

badge

Badge number. Its value is a specific number. This extension parameter will
be passed to the client together with the message body.

For Android devices, you need to implement the badge logic by
yourself.

For iOS devices, iOS system automatically implements the badge logic.
When a message is pushed to the target mobile phone, the number that
you specified in value appears in the badge of the App icon.

mutable-content
The APNs custom push identifier. If a pushed message carries this
parameter, it indicates that the UNNotificationServiceExtension of
iOS10 is supported, otherwise it is a normal push. The value is set to 1.

badge_add_num Accumulative badge number, only available in Huawei channel.

badge_class Activity class corresponding to the desktop App icon in Huawei channel.

big_text
Big text style, the value is fixed to 1, and other values are invalid. This
parameter is only valid for Xiaomi and Huawei phones.

User-defined extension parameters

All other parameters than system extension parameters and system extension parameters with
some significance are user-defined extension parameters. User-defined extension parameters
are passed to the client together with the message body for your use.

5. Click SubmitSubmit to complete creating the message. The new message will appear in the mult iple push
records.

Message Push Service User Guide··Console operat ions

> Document Version: 20230208 63

In addit ion to console operation, you can also push messages by calling relevant APIs. For more
information, see Server APIs.

Relevant operationsRelevant operations
Create a message – Simple push

Call API to push messages

Manage messages

The Simple push records Simple push records tab page shows the relevant information of simple push messages created
in the last 30 days., and you can query the historical messages. The list only displays the messages
pushed through the console. For the messages pushed by calling simple push API, you can query the
message details by device/user ID or custom message ID.

View push detailsView push details
1. Log in to the mPaaS console, select your app, and enter the Message Push ServiceMessage Push Service > MessageMessage

managementmanagement > Simple push records Simple push records page.

2. In the search box displayed in the upper right corner, enter a complete device ID, user ID or customer
message ID to search for the message. The message with the specified target ID and customer
message ID will be displayed in the message list .

Not eNot e

You can only search for simple push messages created in the last 30 days.

Messages are sorted in descending order by creation t ime by default . The information displayed in
the list includes:

Cust omer message IDCust omer message ID: It is customized by user or automatically generated by system.

Push t imePush t ime: It refers to the t ime when the message was pushed, accurate to seconds.

Push modePush mode: It indicates that the message was pushed immediately upon creation or was pushed
in schedule.

Push dimensionPush dimension: It indicates that the message was pushed by user, Android device or iOS device.

T arget IDT arget ID: user ID or device ID.

Message t it leMessage t it le: the t it le of a message.

Creat ion t imeCreat ion t ime: The t ime when the message was successfully created, accurate to seconds.

Push st at usPush st at us: Shows the push status of a message. To learn the status codes and corresponding
descript ion, see Message push status codes.

3. To view the push details of a message, click the ExpandExpand button (++) of the target message on the
list .

Then the following information appears:

Message IDMessage ID: It refers to the unique identifier of a message automatically generated by MPS.

6.2.3. Manage simple push messages6.2.3. Manage simple push messages

Message Push Service User Guide··Console operat ions

> Document Version: 20230208 64

Of f line ret ent ion periodOf f line ret ent ion period: It refers to the t ime when a message expires. If a message has not
been sent successfully, MPS will resend it after the device is connected or a user binding request is
init iated. However, if the message expires, MPS will not resend it .

Display t ypeDisplay t ype: Shows that the message is a plain text message, a big text message or a rich text
message.

Ext ension paramet ersExt ension paramet ers: Shows the extension parameters added during message creation.

Message cont entMessage cont ent : message body.

Revoke messagesRevoke messages
It is supported to revoke the messages that have been pushed in past 7 days. For more information, see
Message revocation.

Silent messages will be immediately withdrawn once you revoke them, and the client-side users have no
sense about that. For non-silent messages, stop pushing the ones not arriving user devices, and cancel
presenting the ones that have arrived the user devices but not appeared.

Not eNot e

The messages with "Failed" push status cannot be revoked.

Message Push Service (MPS) provides real-t ime stat ist ics on the mult iple-push and broadcast-push tasks
that are created through MPS console or triggered by calling API to help you get the message push
status.

View push tasksView push tasks
1. Log in to the mPaaS console, select your app, and enter the Message Push ServiceMessage Push Service > MessageMessage

managementmanagement > Mult iple push records Mult iple push records page.

2. In the search box displayed in the upper right corner, enter a complete push task ID or task name, and
specify the t ime range to search the tasks. The eligible tasks will appear in the task list .

In the task list , the tasks are sorted in descending order by creation t ime. The task information
displayed includes:

T ask IDT ask ID: The unique identifier of the push task, which is automatically generated by the system.

T ask name (API)T ask name (API): If the push task is delivered through the MPS console, the task name is
automatically generated by the system, usually named in the format “console + t ime”, for
example, “Console Wed Mar 24 14:47: 23 CST 202”; if the task is triggered by calling an API, the
task name is the name filled in by the caller.

Push t ypePush t ype: It indicates that the message was pushed immediately upon creation or was pushed in
schedule.

3. To view the push details, click the ExpandExpand button (++) of the target task on the list .

Pushed messagesPushed messages: Refers to the total number of messages pushed by message push backend,
which is counted by the backend.

Successf ully pushed messagesSuccessf ully pushed messages: Refers to the total number of messages successfully pushed by
message push backend, which is counted by the backend.

6.2.4. Manage multiple push messages6.2.4. Manage multiple push messages

Message Push Service User Guide··Console operat ions

> Document Version: 20230208 65

Message arrivalsMessage arrivals: The number of messages that actually arrive the device. For iOS channel or
Android third-party channels (such as Xiaomi and Huawei), the stat ist ics relies on the result
returned from the corresponding third-party channel’s backend after the messages are pushed to
the third-party channels. For the Android self-built channel, the stat ist ics relies on the tracking
report after the messages are pushed the client.

Of f line ret ent ion periodOf f line ret ent ion period: Indicates the validity period of the message. In the validity period, MPS
delivers the message to the target devices or users once the target devices get connected or the
users init iate a binding request t ill the message is pushed successfully. Once the message expires,
the MPS will no longer deliver the message.

Revoke messagesRevoke messages
It is supported to revoke the messages that have been pushed in past 7 days. For more information, see
Message revocation.

Silent messages will be immediately withdrawn once you revoke them, and the client-side users have no
sense about that. For non-silent messages, stop pushing the ones not arriving user devices, and cancel
presenting the ones that have arrived the user devices but not appeared.

Not eNot e

The messages with "Failed" push status cannot be revoked.

All scheduled push tasks and cyclic push tasks created through the mPaaS console and triggered by
calling APIs are displayed in the scheduled push task list . One cyclic push task may contain one or more
scheduled push tasks.

View a scheduled push taskView a scheduled push task
1. Log in to the mPaaS console, and select a target app. In the navigation pane on the left , choose

Message Push ServiceMessage Push Service > Message managementMessage management > Scheduled push t asksScheduled push t asks.

2. In the search bars in the upper right of the displayed Scheduled push t askScheduled push t ask tab page, specify the

scheduled push t ime and the push type, enter a push task ID, and click the SearchSearch button () to

search. Or you can press Enter to search. The tasks that are found will be displayed in the list .

By default , scheduled push tasks are sorted by creation t ime in descending order. The information
displayed in the list includes:

3. Specify the push type and the scheduled push t ime to filter messages, and enter a push task ID to
search for messages. The results that are found will be displayed in the message list . Note that the
push type can be mPaaS console or API and all push types are displayed by default . By default ,
messages in the message list are sorted by creation t ime in descending order. The information
displayed in the list includes:

Scheduled push t imeScheduled push t ime: push t ime specified when you create a push task.

T ask IDT ask ID: unique ID of a scheduled push task. The task ID is generated automatically by the system.

Push modePush mode: scheduled and cyclic.

Push dimensionPush dimension: the push dimension of a message, which can be users or devices.

6.2.5. Manage scheduled push task6.2.5. Manage scheduled push task

Message Push Service User Guide··Console operat ions

> Document Version: 20230208 66

Message t it leMessage t it le: the t it le of a message.

Message bodyMessage body: the body content of a message.

Push t ypePush t ype: simple push and mult iple push.

Creat ion met hodCreat ion met hod: the creation mode of a message. You can push a message through the mPaaS
console or by calling APIs.

Push st at usPush st at us: indicates whether a scheduled push task has been implemented.

Cancel a scheduled push taskCancel a scheduled push task
A scheduled push task that has not been implemented can be canceled. Each cyclic push task contains
one or more scheduled push tasks. When you cancel a cyclic push task, you need to confirm whether to
cancel the latest scheduled push task or all scheduled push tasks.

With Message Push Service (MPS), you can cancel a scheduled push task by the mPaaS console or by
calling APIs. For more details, see sect ion Cancel a scheduled push task.

A template consists of the body, placeholders and some other attributes. You can use placeholders to
specify dynamic content in the template. Only templates with placeholders can be used to send
personalized messages.

You can use templates to flexibly configure messages and eliminate input of repeated content.

In a template, you can mark the dynamic part in the t it let it le, bodybody, and redirect ion URLredirect ion URL by using the
format of # placeholder name## placeholder name# .

ProcedureProcedure
1. Log in to the mPaaS console, select your app, and enter the Message Push ServiceMessage Push Service > MessageMessage

t emplat est emplat es page.

2. On the right page, click the Creat e t emplat eCreat e t emplat e button, and in the pop-up template creation window,
configure template information. The following table describes related parameters.

Paramet erParamet er RequiredRequired Descript ionDescript ion

Template name Yes

The name of the template. The name must be 1 to 200
characters in length, and can contain letters, digits, and
underscores (_). The name must be unique, and it will be used
to identify the template in API calling.

Description Yes
The description of the template. The description must be 1 to
200 characters in length, and can contain letters, numbers,
and underscores (_).

6.3. Message templates6.3. Message templates
6.3.1. Create a message template6.3.1. Create a message template

Message Push Service User Guide··Console operat ions

> Document Version: 20230208 67

Template t it le Yes
The tit le of the template. The tit le must be 1 ~ 200 characters
in length.

Template body Yes
The body of the template. The text must be 1 ~ 200
characters in length.

Message type:
silent message

Yes

Whether to display the message:

YesYes : Indicates that the message will not be displayed in
any form on the target device, and user has no sense about
it.

NoNo : Indicates that the message will be displayed in the
notification bar.

For Android devices, you need to perform different operations
according to the push channel that you have selected:

MPS channelMPS channel: This parameter is sent to the client as a
reference field. You need to parse the message body and
get the content of this field, then control the display of the
message.

Vendor channelVendor channel: This parameter is sent to the target
device as a field. The device vendor's system will then
parse the content of this field, and control the display of
the message. You do not need to perform any other
operations.

For iOS devices, the display of messages is controlled by the
device vendor’s system. You do not need to perform any
other operations.

Paramet erParamet er RequiredRequired Descript ionDescript ion

Message Push Service User Guide··Console operat ions

> Document Version: 20230208 68

Display style Yes

The style that how the message is displayed on the client.
You can choose any one of the following three styles: Default
(short text), Big text, and Rich text.

Def aultDef ault : This style is suitable for messages with concise
and clear content. The message of this style contains t it le
and text only. It is recommended to keep the length of the
message text within 100 characters, including custom
parameters and symbols.

Big t extBig t ext : This is style is suitable for messages with long
text, such as information and news messages, so users can
quickly obtain information without opening the application.
The message of this style contains t it le and text only. It is
recommended to keep the length of the message text
within 256 characters, including custom parameters and
symbols.

Rich t extRich t ext : This style supports the messages containing
icon and image, suitable for the messages with various
content. To ensure good message presentation effect, it is
better to keep the text within two lines.

Icon No

The icon displayed on the right of the message, which can be
JPG, JPEG or PNG image. Enter the public accessable URL of the
icon here.

If you only provide the default icon URL while no materials are
uploaded for the corresponding third-party channels, the
default icon will be automatically pulled and used for the
messages pushed through the third-party channels. Since the
third-party channels have different requirements on the icon
material, it is suggested to upload the material for each third-
party channel seperately according to their requirements.

Def ault iconDef ault icon: The suggested size is 140 * 140px, not
exceeding 50 KB.

OPPO iconOPPO icon: The suggested size is 140 * 140px, not
exceeding 50 KB.

Xiaomi iconXiaomi icon: The suggested size is 120 * 120px, not
exceeding 50 KB.

Huawei iconHuawei icon: The suggested size is 40 * 40dp, not
exceeding 512 KB.

FCM iconFCM icon: If no specific requirement applies, the default
icon will be automatically used.

Paramet erParamet er RequiredRequired Descript ionDescript ion

Message Push Service User Guide··Console operat ions

> Document Version: 20230208 69

Large image No

The image displayed at the lower part of the message, which
can be JPG, JPEG or PNG image. Enter the public accessable URL
of the image here.

If you only provide the default image URL while no materials
are uploaded for the corresponding third-party channels, the
default large image will be automatically pulled and used for
the messages pushed through the third-party channels. Since
the third-party channels have different requirements on the
image, it is suggested to upload the material for each third-
party channel seperately according to their requirements.

Def ault Def ault large large imageimage: The suggested size is 876 * 324px,
not exceeding 1 MB.

OPPO OPPO large large imageimage: The suggested size is 876 * 324px,
not exceeding 1 MB.

Xiaomi Xiaomi large large imageimage: The suggested size is 876 * 324px,
not exceeding 1 MB.

iOS iOS large large imageimage: Support custom images, without
limitation on image size.

FCM large imageFCM large image: If no specific requirement applies, the
default image will be automatically used.

Redirect upon
click

Yes

This parameter is sent to the client as a reference field. You
need to implement subsequent operations by referring to the
field.

Web pageWeb page: Users will be redirected to a Web page. It is
required to enter the URL of the web page to be visited.

Cust om pageCust om page: Users will be redirected to a native page. It
is required to enter the address of the native page to be
visited (Android: ActivityName; iOS: VCName).

Redirection
address

No

The page to be visited after a user taps the message on the
mobile phone. This parameter will be sent to the client as a
reference. You need to develop the implementation logic by
yourself. Set this parameter based on the value of RedirectRedirect
upon clickupon click.

Paramet erParamet er RequiredRequired Descript ionDescript ion

3. Click Submit Submit to create the template. When the template is created successfully, the MessageMessage
t emplat est emplat es page is displayed, with the new template listed at the top.

6.3.2. Manage message templates6.3.2. Manage message templates

Message Push Service User Guide··Console operat ions

> Document Version: 20230208 70

The template list displays information about exist ing message templates. You can view or delete them
as required.

View the template listView the template list
1. Log in to the mPaaS console, select your app, and enter the Message Push ServiceMessage Push Service > MessageMessage

t emplat es t emplat es page.

Templates are listed in descending order by creation t ime . You can view the name, descript ion, body,
and creation t ime of the template.

2. Click ViewView in the Operat ioOperat ionsns column of the target template to view detailed information about the
template.

Delete a templateDelete a template
The procedure is as follows:

1. On the template list , click Delet eDelet e in the Operat ionsOperat ions column of the target template.

2. In the dialog box that appears, click OKOK. Then the template is deleted.

Not eNot e

Before delet ing a template, ensure that it is not used for any messages to be sent. Otherwise,
the corresponding messages cannot be sent.

Message Push Service (MPS) enables you to revoke messages that have been pushed. With this function,
notificat ions that have been sent but not viewed or cleared will disappear from the device notificat ion
bar. To reduce business loss and related impacts, this function mainly applies to the following two
scenarios: 1. Wrong messages are pushed due to misoperations; 2. Messages that have been pushed
but need to be revoked urgently in case of temporary business changes.

You can query the message status and revoke messages through the mPaaS console. In addit ion, MPS
supports backend APIs. You can revoke messages by calling APIs in the business system.

The mode of implementing message revocation varies with the push channel. The following table
describes the specific details.

Push channelPush channel
Revocat ionRevocat ion
support ed orsupport ed or
notnot

How it worksHow it works

Huawei Yes

Overlap a message. After the client
receives the command of revoking a
message, the message displayed in the
notification bar will be cleared. The
"Message revoked" message is
displayed.

6.4. Message revocation6.4. Message revocation

Message Push Service User Guide··Console operat ions

> Document Version: 20230208 71

Vendor channel

Xiaomi Yes

Overlap a message. After the client
receives the command of revoking a
message, the message displayed in the
notification bar will be cleared. The
"Message revoked" message is
displayed.

OPPO Yes

Overlap a message. After the client
receives the command of revoking a
message, the message displayed in the
notification bar will be cleared. The
"Message revoked" message is
displayed.

Vivo Yes

Revoke a message. After the client
receives the command of revoking a
message, the message displayed in the
notification bar will be directly cleared.
That is, the message will disappear from
the notification bar.

Apple (iOS) Yes

Overlap a message. After the client
receives the command of revoking a
message, the message displayed in the
notification bar will be cleared. The
"Message revoked" message is
displayed.

MPS self-built channel Yes

Overlap a message. After the client
receives the command of revoking a
message, the message displayed in the
notification bar will be cleared. The
"Message revoked" message is
displayed.

SMS push No
The SMS messages that have been sent
cannot be revoked.

Push channelPush channel
Revocat ionRevocat ion
support ed orsupport ed or
notnot

How it worksHow it works

Revoke a message by the mPaaS consoleRevoke a message by the mPaaS console
1. Log in to the mPaaS console, and select a target app. In the navigation pane on the left , choose

Message Push ServiceMessage Push Service > Message management.

2. Select a message push task type to enter the message list page.

Message Push Service User Guide··Console operat ions

> Document Version: 20230208 72

3. Select a message to be revoked, click RevokeRevoke, and click OK. After you perform the revocation
operation, a message that is being pushed will not be pushed. A message that has been pushed but
is not displayed will not be displayed.

Revoke a message by calling APIsRevoke a message by calling APIs
A message pushed in the simple push mode can be revoked by the message ID. A message pushed in
the mult iple push mode can be revoked by the task ID. Only messages in recent 7 days can be revoked.

For how to revoke a message by calling APIs, see the documentation listed in Message revocation API.

With Message Push Service (MPS), you can set tags to customize user groups to whom messages are
pushed to facilitate user management. If you set a user tag when you push a message, you can push
the message to all the users marked with such tag.

A tag is one attribute that describes the basic attribute, hobbies, and behavior characterist ics of a user.
After you set one tag for users, you can use such tag to select the user group with the same
characterist ic. In this way, messages are accurately pushed to targeted users. For example, you can set
one tag called "Female" for female users. Then, you can select the user group marked with such tag and
push messages to the group on International Women's Day.

Users have a many-to-many relat ionship with tags. That is, one user can correspond to mult iple tags,
and one tag can also correspond to mult iple users.

Create a user tagCreate a user tag
To create a user tag is to tag a group of users with the same characterist ic.

The procedure is as follows:

1. Log in to the mPaaS console, and select a target app. In the navigation pane on the left , choose
Message Push ServiceMessage Push Service >

Set t ings Set t ings > User t ag managementUser t ag management .

2. Click Creat e user t agCreat e user t ag. In the displayed Create user tag page, enter a tag name and add a group.
Two ways of adding a group are as follows:

T ag nameT ag name: presents the group characterist ic directly to facilitate user management. Any
character is supported. A maximum of 30 characters are allowed. The tag name should be unique in
an app.

Add a groupAdd a group: supports adding users directly and import ing a file including user IDs.

Add direct lyAdd direct ly: enter one or more user IDs in a text box. User IDs are separated with ",". Each
record cannot exceed 60 characters in length; otherwise, the excess content will not be added.
A maximum of 10,000 characters are allowed.

Import f ileImport f ile: upload a .txt f ile that contains the user ID. The file size cannot exceed 100 MB. User
IDs are separated with a line break in a file. Each record cannot exceed 60 characters in length;
otherwise, the excess content will not be added. A maximum of 500,000 user IDs can be
uploaded. When you import user IDs, the system automatically deduplicates the IDs.

3. After you complete the configuration, click SubmitSubmit . A new user tag is created. The new user tag will
be displayed in the list .

View a user tagView a user tag

6.5. User tag management6.5. User tag management

Message Push Service User Guide··Console operat ions

> Document Version: 20230208 73

All user tags in the list are displayed by creation t ime in descending order. The tag name, tag ID, users,
creation t ime, and update t ime are displayed in the user tag list . Where:

Tag ID: generated automatically by the system after you create a user tag successfully.

Users: the number of user IDs contained in the user group.

In the user tag list , click Det ailsDet ails in the Operat ionsOperat ions column to view the user tag information.

Edit a user tagEdit a user tag
In the user tag list , click EditEdit in the Operat ionsOperat ions column to edit the tag name or modify the user
information that corresponds to the tag.

For detailed operations of modifying the user information corresponding to a tag, see the content of
adding a group described in Create a user tag.

Delete a user tagDelete a user tag
In the user tag list , click Delet eDelet e in the Operat ionsOperat ions column to delete the user tag. When you delete a
user tag, all the user information corresponding to the user tag will be deleted.

Export a user listExport a user list
In the user tag list , click ExportExport in the Operat ionsOperat ions column to download the user list that corresponds
to the tag.

Message Push Service (MPS) supports querying the status of the target devices to which the messages
are pushed by user ID (UserId) or device ID (DeviceId). You can check device status to faciliate
troubleshooting in case of any pushing problems.

Complete the folloiwing steps to query device status:

1. Log in to the mPaaS console, select the target app, and go to the Message Push ServiceMessage Push Service > QueryQuery
t oolt ool page from the left navigation pane to enter the device status query page.

2. Set the query criteria to query the status of the target device.

Select the query dimension, User IDUser ID or Device IDDevice ID, enter the corresponding user ID or device ID, and
then press Ent erEnt er or click the search icon to query the relevant information of the device. The queried
information includes user ID , device ID, self-built Token, vendor Token, platform, device
manufacturer, and self-built channel status.

Where,

User IDUser ID: It refers to the userid value passed in when the user calls the binding interface.

Device IDDevice ID: For Android device, it refers to the self-built channel token; for iOS device, it refers to
the APNS token.

Self -built T okenSelf -built T oken: It refers to the identifier of self-built channel.

Vendor T okenVendor T oken: It refers to the identifier of the vendor channel.

Self -built channel st at usSelf -built channel st at us: It indicates whether the self-built channel of the current device is
online.

For Android device, the device status is either OnlineOnline or Of f lineOf f line.

6.6. Device status query6.6. Device status query

Message Push Service User Guide··Console operat ions

> Document Version: 20230208 74

For iOS device, since the iOS platform completes message push through the third-party channel,
so the device status is always UnknownUnknown.

This topic describes how to configure the iOS and Android push channels through console.

Configure iOS push channelConfigure iOS push channel
When you push messages to an iPhone, the APNs service is used as the message push gateway. You
must upload the iOS push cert if icate on the console to access APNs service.

Complete the following steps to configure the iOS push cert if icate:

1. Log in to the mPaaS console, select the target app, and enter the Message Push ServiceMessage Push Service >
Set t ings Set t ings page from the left-side navigation pane.

2. Click the Push conf igurat ionPush conf igurat ion tab, and in the iOS channeliOS channel area, configure the iOS push cert if icate.

Cert if icat e f ileCert if icat e f ile: Select and upload the pre-prepared iOS push cert if icate. The backend will obtain
the cert if icate environment and BundleId by parsing the uploaded cert if icate. For how to generate
iOS push cert if icate, see Create an iOS push cert if icate.

Cert if icat e passwordCert if icat e password: Enter the cert if icate password, which refers to the password you set
when export ing the .p12 cert if icate.

3. Click the UploadUpload button to save the sett ings. If the cert if icate is in a correct format, you can view the
details. You can use Simple push to test whether a cert if icate is valid and is compatible with the
environment.

Not eNot e

The iOS push cert if icate is only valid for a certain period, please renew the cert if icate before it
becomes invalid to keep the message push working normally. You will be prompted to replace the
cert if icate 15 days before the cert if icate expires. To replace the cert if icate, you can click Re-Re-
uploadupload at the bottom to upload a new one.

Configure Android push channelsConfigure Android push channels
To improve the arrival rate of pushed messages, mPaaS integrates the push functions some mainstream
mobile phone manufacturers such as Huawei, Xiaomi, OPPO, and vivo. Xiaomi Push, Huawei Push, OPPO
Push, and vivo Push are used for message push. Notificat ions can st ill be sent even if the app is not
running. The process can be act ivated when users tap the notificat ion bar.

6.7. Channel configuration6.7. Channel configuration

Message Push Service User Guide··Console operat ions

> Document Version: 20230208 75

Not eNot e

Mobile phone manufacturers' proprietary push channels can help apps achieve stable push
performance. Therefore, we recommend that you integrate third-party push channels to your app.

This topic describes the console-side configurations required for integrating push channels of Xiaomi,
Huawei, OPPO, and vivo.

Configure Huawei push channel

Configure Xiaomi push channel

Configure OPPO push channel

Configure vivo push channel

Configure FCM push channel

Configure Huawei Configure Huawei push channelpush channel
1. On the left-side navigation pane, select the Message Push ServiceMessage Push Service > Set t ings Set t ings menu, and then

enter the Channel conf igurat ionChannel conf igurat ion tab page.

2. Click Conf igureConf igure in the upper right corner of the Huawei push channelHuawei push channel area.

Paramet erParamet er RequiredRequired Descript ionDescript ion

Status Yes

Channel integration status, if the status switch is
turned on, MPS integrates Huawei Push based on
the configurations. If this switch is turned off, the
integration is cancelled.

Package name Yes

Huawei app package name, you can customize the
package name. If you don't fill the field, the Xiaomi
app package name that you register will be
applied by default.

Huawei app ID Yes Huawei app ID.

App key Yes The secret key (AppSecret) of the Huawei app.

Message Push Service User Guide··Console operat ions

> Document Version: 20230208 76

Not eNot e

To obtain the App package name, App ID, and secret key, go to Huawei Developer, log in to
ConsoleConsole, and choose My Product sMy Product s > Mobile App det ailsMobile App det ails.

3. Click OKOK to save the sett ings.

Configure Xiaomi Configure Xiaomi push channelpush channel
1. On the left-side navigation pane, select the Message Push ServiceMessage Push Service > Set t ings Set t ings menu, and then

enter the Channel conf igurat ionChannel conf igurat ion tab page.

2. Click Conf igureConf igure in the upper right corner of the Xiaomi push channelXiaomi push channel area.

Paramet erParamet er RequiredRequired Descript ionDescript ion

Status Yes

Channel integration status, if the status switch is
turned on, MPS integrates MiPush based on the
configurations. If this switch is turned off, the
integration is cancelled.

Package name Yes The name of the main Xiaomi app package.

AppSecret Yes The secret key (AppSecret) of the Xiaomi app.

Not eNot e

To obtain the app package name and secret key, go to Xiaomi DeveloperXiaomi Developer, and choose AppApp
managementmanagement > App inf oApp inf o.

3. Click OKOK to save the sett ings.

Configure OPPO Configure OPPO push channelpush channel
1. On the left-side navigation pane, select the Message Push ServiceMessage Push Service > Set t ings Set t ings menu, and then

enter the Channel conf igurat ionChannel conf igurat ion tab page.

Message Push Service User Guide··Console operat ions

> Document Version: 20230208 77

https://developer.huawei.com/consumer/en/
https://dev.mi.com/console/

2. Click Conf igureConf igure in the upper right corner of the OPPO push channelOPPO push channel area.

Paramet erParamet er RequiredRequired Descript ionDescript ion

Status Yes

Channel integration status, if the status switch is
turned on, MPS integrates OPPO Push based on the
configurations. If the switch is turned off, the
integration is cancelled.

Package name Yes

OPPO app package name, you can customize the
package name which must be consistent with that
on the OPPO PUSH Operation Platform. If you don't
fill the field, the Xiaomi app package name that
you register will be applied by default.

AppKey Yes
AppKey is the client ID used when you init ialize the
client SDK.

MasterSecret Yes
MasterSecret is the identifier used by developers
to authenticate their identit ies when using server
APIs.

Not eNot e

After act ivating OPPO Push on the OPPO PUSH Operation Platform, you can view the AppKey and
MasterSecret of the app by logging into OPPO PUSH Operation Platform, and choosing PushPush
managementmanagement > App conf igurat ionApp conf igurat ion.

3. Click OKOK to save the sett ings.

Configure vivo Configure vivo push channelpush channel
1. On the left-side navigation pane, select the Message Push ServiceMessage Push Service > Set t ings Set t ings menu, and then

enter the Channel conf igurat ionChannel conf igurat ion tab page.

2. Click Conf igureConf igure in the upper right corner of the vivo push channelvivo push channel area.

Message Push Service User Guide··Console operat ions

> Document Version: 20230208 78

https://open.oppomobile.com/
https://push.oppo.com/

Paramet erParamet er RequiredRequired Descript ionDescript ion

Status Yes

The integration status switch of the channel. If the
switch is turned on, MPS integrates vivo Push
based on the configurations. If the switch is turned
off, the integration is cancelled.

Package name Yes

vivo app package name, you can customize the
package name which must be consistent with that
on the vivo Developers Platform. If you don't fill
the field, the Xiaomi app package name that you
register will be applied by default.

AppID Yes
AppID is the client ID used when you init ialize the
client SDK.

AppKey Yes
AppKey is the client ID used when you init ialize the
client SDK.

MasterSecret Yes
MasterSecret is the identifier used by developers
to authenticate their identit ies when using server
APIs.

Not eNot e

After act ivating the Push service for an app on the vivo Developers Platform, you can obtain the
AppId, AppKey, and MasterSecret of the app.

3. Click OKOK to save the sett ings.

Configure FCM push channelConfigure FCM push channel
When you push messages to an Android device outside China, the FCM service is used as the message
push gateway. You must configure FCM on the console.

PrerequisitesPrerequisites

Message Push Service User Guide··Console operat ions

> Document Version: 20230208 79

https://dev.vivo.com.cn/home

You have obtained the FCM server key from the Firebase console (Project set t ingsProject set t ings > CloudCloud
messagingmessaging > Server keyServer key).

ProcedureProcedure
1. On the left-side navigation pane, select the Message Push ServiceMessage Push Service > Set t ings Set t ings menu, and then

enter the Channel conf igurat ionChannel conf igurat ion tab page.

2. Click Conf igureConf igure in the upper right corner of the FCM push channelFCM push channel area.

i. Turn on the St at usSt at us switch, MPS accesses the FCM service. If the switch is turned off, the FCM
service is disabled in MPS.

ii. Enter the FCM server keyFCM server key. Make sure that this is the server key. Android, iOS, and browser keys will
be rejected by FCM.

3. Click OKOK to save the sett ings.

To enhance interact ion security between MPS and your business system, MPS will sign and verify all data
passed through APIs. In addit ion, MPS provides a key management page, on which you can perform key
configuration.

Configure push API

MPS provides RESTful APIs. To ensure data security, MPS will verify the caller’s identity. Therefore,
before calling an API, you must use the RSA algorithm to sign the request and configure a key for
identity verificat ion in the Push Push API conf igurat ionAPI conf igurat ion area on the Key managementKey management page of the MPS
console.

Configure callback API

To receive a receipt of the message sending result , configure the URL of the target RESTful callback
API in the Callback API conf igurat ionCallback API conf igurat ion area on the Key managementKey management page of the MPS console,
and obtain the public key. This is because MPS will sign request parameters when calling a callback
API. You need to use the public key to verify the request signature.

Configure push APIConfigure push API

PrerequisitesPrerequisites
Before configuring the push API, you have used the RSA algorithm to generate a 2048-bit public key.

RSA public key generation method is as follows:

i. Download and install the OpenSSL tool (version 1.1.1 or above) from OpenSSL official website.

ii. Open the OpenSSL tool and use the following command line to generate a 2048-bit RSA private
key.

6.8. Key management6.8. Key management

Message Push Service User Guide··Console operat ions

> Document Version: 20230208 80

https://www.openssl.org/source/

openssl genpkey -algorithm RSA -out private_key.pem -pkeyopt rsa_keygen_bits:2048

iii. Generate an RSA public key based on the RSA private key.

openssl rsa -pubout -in private_key.pem -out public_key.pem

The signing rules are as follows:

Use the SHA-256 signature algorithm.

Convert the signature to a base64 string.

Replace the plus sign (+) and forward slash (/) in the base64 string with a minus sign (-)
to get the final signature.

ProcedureProcedure
Complete the following steps to configure the push API:

1. Log in to the mPaaS console, select the target app, and and go to the Message Push ServiceMessage Push Service >
Set t ings Set t ings page.

2. On the right side of the page, click the Key managementKey management tab to enter the key management page.

3. Click Conf igureConf igure in the upper right corner of the Push Push API conf igurat ionAPI conf igurat ion area.

FieldField RequiredRequired Descript ionDescript ion

Status Yes
Specifies whether to enable the push API. When it
is on, the API provided by MPS can be called. When
it is off, the API cannot be called.

Encryption method No Only the RSA algorithm is available.

RSA public key No

Enter a 2048-bit public key.

After you use a private key to sign request
parameters, MPS will use the public key to decrypt
them to verify the caller's identity.

Message Push Service User Guide··Console operat ions

> Document Version: 20230208 81

Import antImport ant

Ensure that the public key is set correctly and does not contain spaces. Otherwise, the API call will
fail. For more information about API calls, see API reference.

4. Click OKOK to save the sett ings.

Configure callback APIConfigure callback API
Log in to the mPaaS console, select the target app, and perform the following steps to configure the
callback API:

1. On the Key managementKey management page, click Conf igureConf igure in the upper right corner of the Callback APICallback API
conf igurat ionconf igurat ion area. The configuration button is as shown in the following figure.

FieldField RequiredRequired Descript ionDescript ion

Status Yes
Specifies whether to enable the callback API. MPS
will send a receipt to your server according to the
configuration only after the API is enabled.

Callback API URL Yes

Enter the URL of the callback API. The URL must be
an HTTP request URL that can be visited in the
public network. MPS uses the private key to sign
the POST request body and passes the signed
content as the sign parameter.

Encryption method No
MPS uses the RSA algorithm to sign the POST
request body.

Message Push Service User Guide··Console operat ions

> Document Version: 20230208 82

RSA public key No

The system automatically sets this parameter and
you cannot modify it . After obtaining the POST
request body and the sign parameter, your
server needs to use the public key to verify that
the request is sent by MPS and has not been
tampered with during data transmission. For more
information about signature verification, see API
reference > HTTP call.

FieldField RequiredRequired Descript ionDescript ion

2. Click OKOK to save the sett ings.

The t ime when MPS executes a callback varies with the push channel.

Not eNot e

Vendor channels (FCM/APNs/Xiaomi/Huawei/OPPO/vivo): A callback is executed when the
third-party service is called successfully.

MPS self-built channel: A callback is executed when a message is pushed successfully.

Code sampleCode sample

Message Push Service User Guide··Console operat ions

> Document Version: 20230208 83

/**
 * Alipay.com Inc. Copyright (c) 2004-2020 All Rights Reserved.
 */
package com.callback.demo.callbackdemo;

import com.callback.demo.callbackdemo.util.SignUtil;
import org.springframework.stereotype.Controller;
import org.springframework.web.bind.annotation.RequestBody;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RequestMethod;
import org.springframework.web.bind.annotation.RequestParam;

/**
 *
 * @author yqj
 * @version $Id: PushCallbackController.java, v 0.1 2020.03.22 11:20 AM yqj Exp $
 */
@Controller
public class PushCallbackController {

 /**
 * Copy the RSA public key configured for the callback API on the message push console.
 */
 private static final String pubKey = "";

 @RequestMapping(value = "/push/callback" ,method = RequestMethod.POST)
 public void callback(@RequestBody String callbackJson, @RequestParam String sign) {
 System.out.println(sign);
 // Signature verification
 sign = sign.replace('-','+');
 sign = sign.replace('_','/');
 if(!SignUtil.check(callbackJson,sign,pubKey,"UTF-8")){
 System.out.println("Signature verification failed");
 return;
 }
 System.out.println ("Signature verification succeeded");
 // JSON message body
 System.out.println(callbackJson);

 }

}

 callbackJson specifies the JSON request body. An example is as follows:

Message Push Service User Guide··Console operat ions

> Document Version: 20230208 84

{
 "extInfo":{
 "adToken":"da64bc9d7d448684ebaeecfec473f612c57579008343a88d4dbdd145dad20e84",
 "osType":"ios"
 },
 "msgId":"console_1584853300103",
 "pushSuccess":true,
 "statusCode":"2",
 "statusDesc":"Acked",
 "targetId":"da64bc9d7d448684ebaeecfec473f612c57579008343a88d4dbdd145dad20e84"
}

The following table describes each field in callbackJson . You can click here to download the
callback code sample.

FieldField Descript ionDescript ion

msgId The ID of the service message to be pushed.

pushSuccess Indicates whether the message is pushed successfully.

statusCode The message status code.

statusDesc The description of the message status code.

targetId The target ID.

Message Push Service User Guide··Console operat ions

> Document Version: 20230208 85

https://docs-aliyun.cn-hangzhou.oss.aliyun-inc.com/assets/attach/134470/AntCloud_zh/1584948144890/callback-demo.zip

Message Push Service involves the following client APIs.

Call met hodCall met hod APIAPI Descript ionDescript ion

RPC call

Bind Bind the user ID and device ID (Ad-token).

Unbind
Unbind the user ID and device ID (Ad-
token).

Report third-party channel devices
Bind the third-party channel device ID
(Ad-token).

The MPPush class in the intermediate layer of mPaaS encapsulates all the APIs of MPS, including the
interfaces for binding users, unbinding users, and report ing three-party channel device information. The
API calls are implemented through the mobile gateway SDK.

BindBind
Met hod def init ionMet hod def init ion

This method is used to bind user ID and device ID. After the binding is completed, messages can be
pushed in user dimension.

Not eNot e

The interface must be called in the child thread.

 public static ResultPbPB bind(Context ctx, String userId, String token)

This method is used to bind the user ID with device ID. Once the user IDs and device IDs are bound,
MPS push messages from user dimension.

Request paramet ersRequest paramet ers

Paramet erParamet er T ypeT ype Descript ionDescript ion

ctx Context It must be a non-empty Context.

7.API reference7.API reference
7.1. Client APIs7.1. Client APIs

Message Push Service User Guide··API reference

> Document Version: 20230208 86

userId String

The unique identifier of a user. The user ID is not
always the actual identifier in the business system,
but there must be one-to-one mapping between
the user ID and user.

token String The device token distributed by the push gateway.

Paramet erParamet er T ypeT ype Descript ionDescript ion

Response paramet ersResponse paramet ers

Paramet erParamet er Descript ionDescript ion

success

Whether the interface call is successful or not.

true: Successful

false: Failed

code
Operation result code. For the common operation codes and the
corresponding description, see the following Result codes table.

name Name of the result code

message Description corresponding to the result code

Result codesResult codes

CodeCode NameName MessageMessage Descript ionDescript ion

3012 NEED_USERID need userid

The parameter
 userId is empty

when client calls the
interface.

3001 NEED_DELIVERYTOKEN need token

The parameter
 token is empty

when client calls the
interface.

Code sampleCode sample

Message Push Service User Guide··API reference

> Document Version: 20230208 87

 private void doSimpleBind() {
 final ResultPbPB resultPbPB = MPPush.bind(getApplicationContext(), mUserId, PushMsg
Service.mAdToken);
 handlePbPBResult("Bind users", resultPbPB);
 }

UnbindUnbind
Met hod def init ionMet hod def init ion

This method is used to unbind user ID and device ID.

Not eNot e

The interface must be called in the child thread.

 public static ResultPbPB unbind(Context ctx, String userId, String token)

Request paramet ersRequest paramet ers

Paramet erParamet er T ypeT ype Descript ionDescript ion

ctx Context It must be a non-empty Context.

userId String

The unique identifier of a user. The user ID is not
always the actual identifier in the business system,
but there must be one-to-one mapping between
the user ID and user.

token String The device token distributed by the push gateway.

Response paramet ersResponse paramet ers

Refer to the response parameters of Bind API.

Code sampleCode sample

 private void doSimpleUnBind() {
 final ResultPbPB resultPbPB = MPPush.unbind(getApplicationContext()
 , mUserId, PushMsgService.mAdToken);
 handlePbPBResult("Unbind users", resultPbPB);
 }

Report third-party channel devicesReport third-party channel devices
Met hod def init ionMet hod def init ion

This method is used to bind the third-party channel device ID and the Ad-token. That is, the third-
party channel device identifier and mPaaS device identifier (the Ad-token issued by the MPS
gateway) are reported to the mobile push core, and the mobile push core will bind these two
identifiers. After completing this process, you can use third-party channels to push messages.

Message Push Service User Guide··API reference

> Document Version: 20230208 88

Not eNot e

This method will be called once by the framework. To avoid SDK call failure, it is recommended
that you call it again manually.

public static ResultPbPB report(Context context, String deliveryToken, int thirdChannel,
String thirdChannelDeviceToken)

Request paramet ersRequest paramet ers

Paramet erParamet er T ypeT ype Descript ionDescript ion

ctx Context It must be a non-empty Context.

deliveryToken String The device ID (Ad-token) issued by MPS gateway.

thirdChannel int

The third-party channel. Valid values include:

2: Apple

4: Xiaomi

5: Huawei

6: FCM

7: OPPO

8: vivo

thirdChannelDeviceToke
n

String
The ID of a device connected to a third-party
channel.

Response paramet ersResponse paramet ers

Refer to the response parameters of Bind API.

Code sampleCode sample

 private void doSimpleUploadToken() {
 final ResultPbPB resultPbPB = MPPush.report(getApplicationContext(), PushMsgServi
ce.mAdToken
 , PushOsType.HUAWEI.value(), PushMsgService.mThirdToken);
 handlePbPBResult("report 3rd-party device ID", resultPbPB);

TroubleshootingTroubleshooting
If an exception occurs in the process of init iat ing RPC requests for resources, refer to Security guard
result codes.

7.2. Server APIs7.2. Server APIs

Message Push Service User Guide··API reference

> Document Version: 20230208 89

Message Push Service (MPS) provides the following OpenAPIs for the server to implement the functions
of message push (simple push, template push, mult iple push, and broadcast push), message revocation,
message stat ist ics and analysis, and scheduled push. As for message push, MPS supports immediate
push, t imed push, and scheduled push three push strategies to meet the push requirements in different
scenarios and reduce repetit ive work.

APIAPI Descript ionDescript ion

Push message - simple push Pushes one message to one target ID.

Push message - template push
Pushes one message to one target ID. The message is created based
on a template.

Push message - multiple push

Pushes different messages to multiple target IDs. Based on the
template, configure different template placeholders for the target IDs
to Implement personalized message push by use template
placeholders based on the template.

Push message - broadcast push
Pushes the same message to all devices. The message is created
based on a template.

Revoke messages

Withdraws the pushed messages.

Messages pushed through simple push or template push can be
withdrawn through message ID; messages pushed through the
multiple push or broadcast push can be withdrawn through task ID.

Analyze message push

Queries message push statistical data, including pushed messages,
successfully pushed messages, message arrivals, opened messages,
and ignored messages, and query the multiple/broadcast push tasks
created on MPS console or triggered by calling API as well as the task
details.

Manage scheduled push tasks

Supports querying the scheduled push task list and canceling the
scheduled push task. Scheduled push fall into two types: t imed push
and cyclic push:

Scheduled push: Pushes messages at a specified time. For example,
push messages at 8:00 AM on June 19.

Cyclic push: Pushes messages repeatedly within a specified time
period. For example, push messages at 8:00 AM every Friday from
June 1 to September 30. A cyclic push task may generate one or
more scheduled push tasks.

SDK preparationsSDK preparations

Message Push Service User Guide··API reference

> Document Version: 20230208 90

MPS supports four programming languages: Java, Python, Node.js, and PHP. Before you call the
preceding APIs for message push, you should make different preparations for different programming
languages.

The following examples describe the preparations needed before implementing the SDK for different
programming languages.

JavaJava
Before you call the preceding four APIs for message push, introduce the Maven configuration. Import
the following dependencies to the main pom f ile:

<dependency>
 <groupId>com.aliyun</groupId>
 <artifactId>aliyun-java-sdk-mpaas</artifactId>
 <version>3.0.8</version>
</dependency>

<dependency>
<groupId>com.aliyun</groupId>
 <artifactId>aliyun-java-sdk-core</artifactId>
 <optional>true</optional>
 <version>[4.3.2,5.0.0)</version>
</dependency>

PythonPython
Run the following commands to add relevant dependencies.

Aliyun SDK
pip install aliyun-python-sdk-core
mPaaSs SDK
pip install aliyun-python-sdk-mpaas

Node.jsNode.js
Run the following commands to add relevant dependencies.

npm i @alicloud/mpaas20190821

PHPPHP
Run the following commands to add relevant dependencies.

composer require alibabacloud/sdk

Push message - simple pushPush message - simple push
Push one message to one target ID. Before you call this API, you must introduce the required
dependencies. For more information, see SDK preparations.

Request parametersRequest parameters

Message Push Service User Guide··API reference

> Document Version: 20230208 91

ParamParam
et eret er

Dat aDat a
t ypet ype

RequirRequir
eded ExampleExample Descript ionDescript ion

classific
ation

String No 1

Indicates the type of the messages pushed
through vivo push channel:

0 - Operational message

1 - System message

If not filled, it defaults to 1.

taskNa
me

String Yes simpleTest The name of push task

tit le String Yes Test Message tit le

content String Yes Test Message body

appId String Yes
ONEX570DA8921172
1

mPaaS app ID

workspa
ceId

String Yes test mPaaS workspace

delivery
Type

Long Yes 3

The type of target ID. Valid values:

1 - Android device

2 - iOS device

3 - User

Message Push Service User Guide··API reference

> Document Version: 20230208 92

targetM
sgkey

String Yes
{“user1024”:”157
8807462788”}

Targets to which the message will be pushed,
in the map format:

key: The target, which depends on the
value of deliveryType .

If the value of deliveryType is 1, the
key is Android device ID.

If the value of deliveryType is 2, the
key is iOS device ID.

If the value of deliveryType is 3, the
key is user ID which is the value of
 userid passed in when you called

the binding API.

value: The business ID of the message,
which is user-defined and must be unique.

Note that the number of the targets cannot
exceed 10.

expiredS
econds

Long Yes 300 The validity period of message, in seconds.

pushStyl
e

Integer Yes 0

Push style:

0 - Default

1 - Big text

2 - Image and text

extende
dParam
s

String No
{“key1”:”value1”
}

The extension parameters, in the map format.

pushActi
on

Long
No 0

The redirection method upon a tap on the
message. Valid values:

0: Web URL

1 - Intent Activity

The default redirection method is Web URL.

uri String No http://www
The URL to be redirected to upon a tap on the
message.

ParamParam
et eret er

Dat aDat a
t ypet ype

RequirRequir
eded ExampleExample Descript ionDescript ion

Message Push Service User Guide··API reference

> Document Version: 20230208 93

silent Long No 1

Specify whether the message is silent. Valid
values:

1 - Silent

0 - Not silent

notifyTy
pe

String No

Message push channel:

transparent - MPS self-built channel

notify - Default channel

imageUr
ls

String No
Large image link (JSON string), supported in
OPPO, MIUI, FCM and iOS push channels. You
can use defaultUrl as the default value.

iconUrls String No
Icon link (JSON string), supported in OPPO,
MIUI, FCM and iOS push channels. You can use
 defaultUrl as the default value.

strategy
Type

int No 1

Push strategy:

0 - Immediately

1 - T imed

2 - Cyclic

It is 0 by default.

Strategy
Content

String No

Push strategy details (JSON string). This
parameter is required when the value of
 strategyType is not 0. See the following

description of the StrategyContent fields.

ParamParam
et eret er

Dat aDat a
t ypet ype

RequirRequir
eded ExampleExample Descript ionDescript ion

StrategyContent fieldsStrategyContent fields
JSON value is converted to String and passed in.

ParamParam
et eret er

Dat aDat a
t ypet ype

RequirRequir
eded ExampleExample Descript ionDescript ion

Message Push Service User Guide··API reference

> Document Version: 20230208 94

fixedTi
me

long No 1630303126000

Scheduled push timestamp (in ms, accurate
to second).

When the push strategy is T imed (the value of
 strategyType is 1), fixedTime is

required.

startT im
e

long No 1640966400000

Cycle period start t imestamp (in ms, accurate
to day).

When the push strategy is Cyclic (the value of
 strategyType is 2), startTime is

required.

endTim
e

long No 1672416000000

Cycle period end timestamp (in ms, accurate
to day). The end time cannot exceed 180 days
after the current day.

When the push strategy is Cyclic (the value of
 strategyType is 2), endTime is

required.

circleTy
pe

int No 3

Loop type:

1 - Daily

2 - Weekly

3 - Monthly

When the push strategy is Cyclic (the value of
 strategyType is 2), circleType is

required.

ParamParam
et eret er

Dat aDat a
t ypet ype

RequirRequir
eded ExampleExample Descript ionDescript ion

Message Push Service User Guide··API reference

> Document Version: 20230208 95

circleVal
ue

int[] No [1,3]

Cycle value:

If the loop type is daily: Empty

If the loop type is weekly: Set the cyclic
push time every week. For example,
 [1,3] means pushing the message

every Monday and Wednesday.

If the loop type is monthly: Set the cyclic
push time every month. For example,
 [1,3] means pushing the message on

the 1st and 3rd day every month.

When the push strategy is Cyclic (the value of
 strategyType is 2 and the value of
 circleType is not daily), circleValue

is required.

time String No 09:45:11

Cyclic push time (t ime format: HH:mm:ss).

When the push strategy is Cyclic (the value of
 strategyType is 2), time is required.

ParamParam
et eret er

Dat aDat a
t ypet ype

RequirRequir
eded ExampleExample Descript ionDescript ion

Not eNot e

The upper limit of unexecuted t imed or cyclic push tasks is 100 by default .

The cycle period is from 00:00 at the start date to 24:00 at the end date.

Neither the cycle start t ime nor the end t ime can be earlier than 00:00 of the day, and the
end t ime cannot be earlier than the start t ime.

Response parametersResponse parameters

ParametParamet
erer

Dat aDat a
t ypet ype ExampleExample Descript ionDescript ion

RequestId String
B589F4F4-CD68-3CE5-
BDA0-
6597F33E23916512

Request ID

ResultCod
e

String OK Request result code

Message Push Service User Guide··API reference

> Document Version: 20230208 96

ResultMes
sage

String param is invalid Error description

PushResul
t

JSON Request result

Success boolean true
Request status. The value of Success is
contained in the PushRresult JSON string.

ResultMsg String param is invalid
Error content. The value of ResultMsg is
contained in the PushRresult JSON string.

Data String
903bf653c1b5442b9ba0
7684767bf9c2

Scheduled push task ID. When strategyType is
not 0, this field is not empty.

ParametParamet
erer

Dat aDat a
t ypet ype ExampleExample Descript ionDescript ion

Java sample codeJava sample code
Click here for information about how to obtain the AccessKey ID and AccessKey secret in the following
sample code.

Message Push Service User Guide··API reference

> Document Version: 20230208 97

 DefaultProfile.addEndpoint("cn-hongkong", "mpaas", "mpaas.cn-hongkong.aliyuncs.com");
 // Create a DefaultAcsClient instance and initialize it
 DefaultProfile profile = DefaultProfile.getProfile(
 "cn-hangzhou", // Region ID
 "******", // The AccessKey ID of the RAM account
 "*****"); // The AccessKey secret of the RAM account

 IAcsClient client = new DefaultAcsClient(profile);
 // Create an API request and set parameters
 PushSimpleRequest request = new PushSimpleRequest();
 request.setAppId("ONEX570DA89211721");
 request.setWorkspaceId("test");
 request.setTaskName("Test task");
 request.setTitle("Test");
 request.setContent("Test");
 request.setDeliveryType(3L);
 Map<String,String> extendedParam = new HashMap<String, String>();
 extendedParam.put("key1","value1");
 request.setExtendedParams(JSON.toJSONString(extendedParam));
 request.setExpiredSeconds(300L);

 request.setPushStyle(2);
 String imageUrls = "{\"defaultUrl\":\"https://pre-mpaas.oss-cn-hangzhou.aliyuncs.co
m/tmp/test.png\",\"oppoUrl\":\"https://pre-mpaas.oss-cn-hangzhou.aliyuncs.com/tmp/test.png\
",\"miuiUrl\":\"https://pre-mpaas.oss-cn-hangzhou.aliyuncs.com/tmp/test.png\",\"fcmUrl\":\"
https://pre-mpaas.oss-cn-hangzhou.aliyuncs.com/tmp/test.png\",\"iosUrl\":\"https://pre-mpaa
s.oss-cn-hangzhou.aliyuncs.com/tmp/test.png\"}";
 String iconUrls = "{\"defaultUrl\":\"https://pre-mpaas.oss-cn-hangzhou.aliyuncs.com
/tmp/test.png\",\"hmsUrl\":\"https://pre-mpaas.oss-cn-hangzhou.aliyuncs.com/tmp/test.png\",
\"oppoUrl\":\"https://pre-mpaas.oss-cn-hangzhou.aliyuncs.com/tmp/test.png\",\"miuiUrl\":\"h
ttps://pre-mpaas.oss-cn-hangzhou.aliyuncs.com/tmp/test.png\"}";
 request.setImageUrls(imageUrls);
 request.setIconUrls(iconUrls);

 request.setStrategyType(2);
 request.setStrategyContent("{\"fixedTime\":1630303126000,\"startTime\":162567360000
0,\"endTime\":1630303126000,\"circleType\":1,\"circleValue\":[1, 7],\"time\":\"13:45:11\"}"
);

 Map<String,String> target = new HashMap<String, String>();
 String msgKey = String.valueOf(System.currentTimeMillis());
 target.put("user1024",msgKey);
 request.setTargetMsgkey(JSON.toJSONString(target));
 // Initiate the request and handle the response or exceptions
 PushSimpleResponse response;
 try {
 response = client.getAcsResponse(request);
 System.out.println(response.getResultCode());
 System.out.println(response.getResultMessage());
 } catch (ClientException e) {
 e.printStackTrace();
 }

Message Push Service User Guide··API reference

> Document Version: 20230208 98

Python sample codePython sample code

from aliyunsdkcore.client import AcsClient
from aliyunsdkmpaas.request.v20190821 import PushSimpleRequest
import json

Initialize AcsClient instance
client = AcsClient(
 "***",
 "***",
 "cn-hongkong"
);

Initialize a request and set parameters
request = PushSimpleRequest.PushSimpleRequest()
request.set_endpoint("mpaas.cn-hongkong.aliyuncs.com")
request.set_AppId("ONEX570DA89211721")
request.set_WorkspaceId("test")
request.set_Title("Python test")
request.set_Content("Test 2")
request.set_DeliveryType(3)
request.set_TaskName("The test task of Python template push")
request.set_ExpiredSeconds(600)
target = {"user1024":str(time.time())}
request.set_TargetMsgkey(json.dumps(target))

Print response
response = client.do_action_with_exception(request)
print response

Node.js sample codeNode.js sample code

Message Push Service User Guide··API reference

> Document Version: 20230208 99

const sdk = require('@alicloud/mpaas20190821');

const { default: Client, PushSimpleRequest } = sdk;
// Create a client
const client = new Client({
 accessKeyId: '****',
 accessKeySecret: '*****',
 endpoint: 'mpaas.cn-hongkong.aliyuncs.com',
 apiVersion: '2019-08-21'
});
// Initialize the request.
 const request = new PushSimpleRequest();
 request.appId = "ONEX570DA89211721";
 request.workspaceId = "test";
 request.title = "Node test";
 request.content = "Test";
 request.deliveryType = 3;
 request.taskName = "Node test task";
 request.expiredSeconds=600;
 const extendedParam = {
 test: 'Custom extension parameter'
 };
 request.extendedParams = JSON.stringify(extendedParam);
// The value is the ID of the business message. Make sure that the ID is unique.
 const target = {
 "userid1024": String(new Date().valueOf())
 };
 request.targetMsgkey = JSON.stringify(target);

// Call the API operation.
try {
 client.pushSimple(request).then(res => {
 console.log('SUCCESS', res);
 }).catch(e => {
 console.log('FAIL', e);
 });
} catch(e) {
 console.log('ERROR', e);
}

PHP sample codePHP sample code

Message Push Service User Guide··API reference

> Document Version: 20230208 100

<?php

use AlibabaCloud\Client\AlibabaCloud;
use AlibabaCloud\MPaaS\MPaaS;
AlibabaCloud::accessKeyClient('accessKeyId', 'accessKeySecret')
 ->regionId('cn-hongkong')
 ->asDefaultClient();

class Demo {
 public function run() {
 try {
 $this->simplePush();
 } catch (\Exception $e) {
 }
 }

 public function simplePush() {
 $request = MPaaS::v20190821()->pushSimple();
 $result = $request->withAppId("ONEX570DA89211721")
 ->withWorkspaceId("test")
 ->withTitle("PHP test")
 ->withContent("Test 3")
 ->withDeliveryType(3)
 ->withTaskName("PHP test task")
 ->withExpiredSeconds(600)
 ->withTargetMsgkey(
 json_encode(["userid1024" => "".time()]
))
 // endpoint
 ->host("mpaas.cn-hongkong.aliyuncs.com")
 // Specify whether to enable the debug mode
 ->debug(true)
 ->request();
 }
}

Push message - template pushPush message - template push
Template push refers to pushing one message to a single target ID. The message is created based on a
template. Mult iple IDs can share the same template.

Before you call the interface, ensure that you have completed the following operations:

You have created a template in the MPS console. For more information, see Create a template.

You have introduced the required dependencies. For more information, see SDK preparations.

Request parametersRequest parameters

Message Push Service User Guide··API reference

> Document Version: 20230208 101

ParamParam
et eret er

Dat aDat a
t ypet ype

RequirRequir
eded ExampleExample Descript ionDescript ion

classific
ation

String No 1

Indicates the type of the messages pushed
through vivo push channel:

0 - Operational message

1 - System message

If not filled, it defaults to 1.

taskNa
me

String Yes templateTest The name of push task

appId String Yes
ONEX570DA8921172
1

mPaaS app ID

workspa
ceId

String Yes test mPaaS workspace

delivery
Type

Long Yes 3

The type of target ID. Valid values:

1 - Android device

2 - iOS device

3 - User

targetM
sgkey

String Yes
{“user1024”:”157
8807462788”}

Targets to which the message will be pushed,
in the map format:

key: The target, which depends on the
value of deliveryType .

If the value of deliveryType is 1, the
key is Android device ID.

If the value of deliveryType is 2, the
key is iOS device ID.

If the value of deliveryType is 3, the
key is user ID which is the value of
 userid passed in when you called

the binding API.

value: The business ID of the message,
which is user-defined and must be unique.

Note that the number of the targets cannot
exceed 10.

Message Push Service User Guide··API reference

> Document Version: 20230208 102

expiredS
econds

Long Yes 300 The validity period of message, in seconds.

templat
eName

String Yes testTemplate
The name of template. Create a template in
the MPS console.

templat
eKeyVal
ue

String No
{“money”:”200”,
”name”:”Bob”}

The parameters of template, in the map
format. The parameters depend on the
template specified by templateName . Key
refers to the placeholder while value refers to
the specific value that is used to replace the
placeholder. For example, the content of a
template can be Congratulations to
#name# for winning RMB #money# . The
string between two number signs “#” is the
name of the placeholder.

extende
dParam
s

String No {“key1”:”value1”
}

The extension parameters, in the map format.

notifyTy
pe

String
No

Message push channel:

transparent - MPS self-built channel

notify - Default channel

strategy
Type

int No 1

Push strategy:

0 - Immediately

1 - T imed

2 - Cyclic

It is 0 by default.

Strategy
Content String No

Push strategy details (JSON string). This
parameter is required when the value of
 strategyType is not 0. See the following

description of the StrategyContent fields.

ParamParam
et eret er

Dat aDat a
t ypet ype

RequirRequir
eded ExampleExample Descript ionDescript ion

StrategyContent fieldsStrategyContent fields
JSON value is converted to String and passed in.

Message Push Service User Guide··API reference

> Document Version: 20230208 103

ParamParam
et eret er t ypet ype RequirRequir

eded ExampleExample Descript ionDescript ion

fixedTi
me

long No 1630303126000

Scheduled push timestamp (in ms, accurate
to second).

When the push strategy is T imed (the value of
 strategyType is 1), fixedTime is

required.

startT im
e

long No 1640966400000

Cycle period start t imestamp (in ms, accurate
to day).

When the push strategy is Cyclic (the value of
 strategyType is 2), startTime is

required.

endTim
e

long No 1672416000000

Cycle period end timestamp (in ms, accurate
to day). The end time cannot exceed 180 days
after the current day.

When the push strategy is Cyclic (the value of
 strategyType is 2), endTime is

required.

circleTy
pe

int No 3

Loop type:

1 - Daily

2 - Weekly

3 - Monthly

When the push strategy is Cyclic (the value of
 strategyType is 2), circleType is

required.

Message Push Service User Guide··API reference

> Document Version: 20230208 104

circleVal
ue

int[] No [1,3]

Cycle value:

If the loop type is daily: Empty

If the loop type is weekly: Set the cyclic
push time every week. For example,
 [1,3] means pushing the message

every Monday and Wednesday.

If the loop type is monthly: Set the cyclic
push time every month. For example,
 [1,3] means pushing the message on

the 1st and 3rd day every month.

When the push strategy is Cyclic (the value of
 strategyType is 2 and the value of
 circleType is not daily), circleValue

is required.

time String No 09:45:11

Cyclic push time (t ime format: HH:mm:ss).

When the push strategy is Cyclic (the value of
 strategyType is 2), time is required.

ParamParam
et eret er t ypet ype RequirRequir

eded ExampleExample Descript ionDescript ion

Not eNot e

The upper limit of unexecuted t imed or cyclic push tasks is 100 by default .

The cycle period is from 00:00 at the start date to 24:00 at the end date.

Neither the cycle start t ime nor the end t ime can be earlier than 00:00 of the day, and the
end t ime cannot be earlier than the start t ime.

Response parametersResponse parameters

Paramet erParamet er Dat a t ypeDat a t ype ExampleExample Descript ionDescript ion

RequestId String

B589F4F4-CD68-
3CE5-BDA0-
6597F33E2391651
2

Request ID

ResultCode String OK Request result code

Message Push Service User Guide··API reference

> Document Version: 20230208 105

ResultMessage String param is invalid Error description

PushResult JSON Request result

Success boolean true
Request status. The value of
 Success is contained in the
 PushRresult JSON string.

ResultMsg String param is invalid
Error content. The value of
 ResultMsg is contained in the
 PushRresult JSON string.

Data String
903bf653c1b5442
b9ba07684767bf9
c2

Scheduled push task ID. When
 strategyType is not 0, this field is

not empty.

Paramet erParamet er Dat a t ypeDat a t ype ExampleExample Descript ionDescript ion

Java sample codeJava sample code
Click here for information about how to obtain the AccessKey ID and AccessKey secret in the following
sample code.

Message Push Service User Guide··API reference

> Document Version: 20230208 106

 DefaultProfile.addEndpoint("cn-hongkong", "mpaas", "mpaas.cn-hongkong.aliyuncs.com");
 // Create a DefaultAcsClient instance and initialize it.
 DefaultProfile profile = DefaultProfile.getProfile(
 "cn-hangzhou", // region ID
 "******", // The AccessKey ID of the RAM account
 "******"); // The AccessKey secret of the RAM account

 IAcsClient client = new DefaultAcsClient(profile);
 // Create an API request and set parameters
 PushTemplateRequest request = new PushTemplateRequest();
 request.setAppId("ONEX570DA89211721");
 request.setWorkspaceId("test");
 request.setTemplateName("testTemplate");
 // Hello #name#. Congratulations to you for winning RMB #money#.
 Map<String,String> templatekv = new HashMap<String, String>();
 templatekv.put("name"," Bob");
 templatekv.put("money","200");
 request.setTemplateKeyValue(JSON.toJSONString(templatekv));
 request.setExpiredSeconds(600L);
 request.setTaskName("templateTest");
 request.setDeliveryType(3L);
 Map<String,String> target = new HashMap<String, String>();
 String msgKey = String.valueOf(System.currentTimeMillis());
 target.put("userid1024",msgKey);
 request.setTargetMsgkey(JSON.toJSONString(target));

 request.setStrategyType(2);
 request.setStrategyContent("{\"fixedTime\":1630303126000,\"startTime\":162567360000
0,\"endTime\":1630303126000,\"circleType\":1,\"circleValue\":[1, 7],\"time\":\"13:45:11\"}"
);

 PushTemplateResponse response;
 try {
 response = client.getAcsResponse(request);

 System.out.println(response.getResultCode());
 System.out.println(response.getResultMessage());
 } catch (ClientException e) {
 e.printStackTrace();
 }

Python sample codePython sample code

Message Push Service User Guide··API reference

> Document Version: 20230208 107

from aliyunsdkcore.client import AcsClient
from aliyunsdkmpaas.request.v20190821 import PushTemplateRequest
import json
import time

Initialize AcsClient instance
client = AcsClient(
 "AccessKey ID",
 "AccessKey Secret",
 "cn-hongkong"
);

Initialize a request and set parameters
request = PushTemplateRequest.PushTemplateRequest()
request.set_endpoint("mpaas.cn-hongkong.aliyuncs.com")
request.set_AppId("ONEX570DA89211721")
request.set_WorkspaceId("test")
request.set_TemplateName("template1024")
templatekv = {"name":"Bob","money":"200"}
request.set_TemplateKeyValue(json.dumps(templatekv))
request.set_DeliveryType(3)
request.set_TaskName("The test task of Python template push")
request.set_ExpiredSeconds(600)
target = {"userid1024":str(time.time())}
request.set_TargetMsgkey(json.dumps(target))

Print response
response = client.do_action_with_exception(request)
print response

Node.js sample codeNode.js sample code

Message Push Service User Guide··API reference

> Document Version: 20230208 108

const sdk = require('@alicloud/mpaas20190821');

const { default: Client, PushTemplateRequest } = sdk;
// Create a client.
const client = new Client({
 accessKeyId: 'accessKeyId',
 accessKeySecret: 'accessKeySecret',
 endpoint: 'mpaas.cn-hongkong.aliyuncs.com',
 apiVersion: '2019-08-21'
});
// Initialize the request.
 const request = new PushTemplateRequest();
 request.appId = "ONEX570DA89211721";
 request.workspaceId = "test";
 request.templateName= "template1024";
 const templatekv = {
 name: 'Bob',
 money:'300'
 };
 request.templateKeyValue = JSON.stringify(templatekv);
 request.deliveryType = 3;
 request.taskName = "Node test task";
 request.expiredSeconds=600;
 const extendedParam = {
 test: 'Custom extension parameter'
 };
 request.extendedParams = JSON.stringify(extendedParam);
 const target = {
 "userid1024": String(new Date().valueOf())
 };
 request.targetMsgkey = JSON.stringify(target);

// Call the API operation.
try {
 client.pushTemplate(request).then(res => {
 console.log('SUCCESS', res);
 }).catch(e => {
 console.log('FAIL', e);
 });
} catch(e) {
 console.log('ERROR', e);
}

PHP sample codePHP sample code

Message Push Service User Guide··API reference

> Document Version: 20230208 109

<?php

use AlibabaCloud\Client\AlibabaCloud;
use AlibabaCloud\MPaaS\MPaaS;
AlibabaCloud::accessKeyClient('accessKeyId', 'accessKeySecret')
 ->regionId('cn-hongkong')
 ->asDefaultClient();

class Demo {
 public function run() {
 try {
 $this->templatePush();
 } catch (\Exception $e) {
 }
 }

 public function templatePush() {
 $request = MPaaS::v20190821()->pushTemplate();
 $result = $request->host("mpaas.cn-hongkong.aliyuncs.com")
 // Specify whether to enable the debug mode.
 ->debug(true)
 ->withAppId("ONEX570DA89211721")
 ->withWorkspaceId("test")
 ->withTemplateName("template1024")
 ->withTemplateKeyValue(json_encode(["name" => "Bob", "money" => "200"]))
 ->withDeliveryType(3)
 ->withTaskName("PHP test task")
 ->withExpiredSeconds(600)
 ->withTargetMsgkey(
 json_encode(["userid1024" => "".time()])
)
 ->request();
 }
}

Push message - multiple pushPush message - multiple push
You can call this API to push different messages to different target IDs. This API allows you to create a
personalized message for a target ID by replacing the template placeholders. Different from template
push, mult iple push allows you to send messages of different content to different target IDs.

Before you call the interface, ensure that you have completed the following operations:

You have created a template in the MPS console, and the template contains placeholders. Otherwise,
you can’t implement personalized message push, that is, push different messages to different target
IDs. For more information, see Create a template.

You have introduced the required dependencies. For more information, see SDK preparations.

Request parametersRequest parameters

Message Push Service User Guide··API reference

> Document Version: 20230208 110

ParamParam
et eret er

Dat aDat a
t ypet ype

RequirRequir
eded ExampleExample Descript ionDescript ion

classific
ation

String No 1

Indicates the type of the messages pushed
through vivo push channel:

0 - Operational message

1 - System message

If not filled, it defaults to 1.

taskNa
me

String Yes multipleTest The name of push task

appId String Yes
ONEX570DA8921172
1

mPaaS app ID

workspa
ceId

String Yes test mPaaS workspace

delivery
Type

Long Yes 3

The type of target ID. Valid values:

1 - Android device

2 - iOS device

3: User

templat
eName

String Yes testTemplate
Template name. The template can be created
in the MPS console.

targetM
sgs

List Yes
targetMsgs object
list

The list of TargetMsg objects. | The list of
push targets. For information about the
parameters of each object, see targetMsgs
objects.

expiredS
econds

Long Yes 300 The validity period of message, in seconds.

extende
dParam
s

String No
{“key1”:”value1”
}

The extension parameters, in the map format.

Message Push Service User Guide··API reference

> Document Version: 20230208 111

notifyTy
pe

String No

Message push channel:

transparent - MPS self-built channel

notify - Default channel

strategy
Type

int tra No 1

Push strategy:

0 – Immediately

1 - Scheduled

2 - Cyclic

It is 0 by default.

Strategy
Content

String No

Push strategy details (JSON string). This
parameter is required when the value of
 strategyType is not 0. See the following

description of the StrategyContent fields.

ParamParam
et eret er

Dat aDat a
t ypet ype

RequirRequir
eded ExampleExample Descript ionDescript ion

targetMsgs objectstargetMsgs objects

ParamParam
et eret er

Dat aDat a
t ypet ype

RequirRequir
eded ExampleExample Descript ionDescript ion

target String Yes userid1024
The target ID, which depends on the value of
the deliveryType parameter.

msgKey String Yes 1578807462788

The ID of business message. The ID is used for
message troubleshooting. The ID is user
defined and must be unique.

Message Push Service User Guide··API reference

> Document Version: 20230208 112

templat
eKeyVal
ue

String No
{“money”:”200”,
”name”:”Bob”}

The parameters of template, in the map
format. The parameters depend on the
template specified by templateName . Key
refers to the placeholder while value refers to
the specific value that is used to replace the
placeholder. For example, the content of a
template can be Congratulations to
#name# for winning RMB #money# . The
string between two number signs “#” is the
name of the placeholder.

extende
dParam
s

String No
{“key1”:”value1”
}

The extension parameters, in the map format.
Different messages have different extension
parameters.

ParamParam
et eret er

Dat aDat a
t ypet ype

RequirRequir
eded ExampleExample Descript ionDescript ion

StrategyContent fieldsStrategyContent fields
JSON value is converted to String and passed in.

ParamParam
et eret er

Dat aDat a
t ypet ype

RequirRequir
eded ExampleExample Descript ionDescript ion

fixedTi
me

long No 1630303126000

Scheduled push timestamp (in ms, accurate
to second).

When the push strategy is T imed (the value of
 strategyType is 1), fixedTime is

required.

startT im
e

long No 1640966400000

Cycle period start t imestamp (in ms, accurate
to day).

When the push strategy is Cyclic (the value of
 strategyType is 2), startTime is

required.

endTim
e

long No 1672416000000

Cycle period end timestamp (in ms, accurate
to day). The end time cannot exceed 180 days
after the current day.

When the push strategy is Cyclic (the value of
 strategyType is 2), endTime is

required.

Message Push Service User Guide··API reference

> Document Version: 20230208 113

circleTy
pe

int No 3

Loop type:

1 - Daily

2 - Weekly

3 - Monthly

When the push strategy is Cyclic (the value of
 strategyType is 2), circleType is

required.

circleVal
ue

int[] No [1,3]

Cycle value:

If the loop type is daily: Empty

If the loop type is weekly: Set the cyclic
push time every week. For example,
 [1,3] means pushing the message

every Monday and Wednesday.

If the loop type is monthly: Set the cyclic
push time every month. For example,
 [1,3] means pushing the message on

the 1st and 3rd day every month.

When the push strategy is Cyclic (the value of
 strategyType is 2 and the value of
 circleType is not daily), circleValue

is required.

time String No 09:45:11

Cyclic push time (t ime format: HH:mm:ss).

When the push strategy is Cyclic (the value of
 strategyType is 2), time is required.

ParamParam
et eret er

Dat aDat a
t ypet ype

RequirRequir
eded ExampleExample Descript ionDescript ion

Not eNot e

The upper limit of unexecuted t imed or cyclic push tasks is 100 by default .

The cycle period is from 00:00 at the start date to 24:00 at the end date.

Neither the cycle start t ime nor the end t ime can be earlier than 00:00 of the day, and the
end t ime cannot be earlier than the start t ime.

Response parametersResponse parameters

Message Push Service User Guide··API reference

> Document Version: 20230208 114

Paramet erParamet er Dat a t ypeDat a t ype ExampleExample Descript ionDescript ion

RequestId String

B589F4F4-CD68-
3CE5-BDA0-
6597F33E2391651
2

Request ID

ResultCode String OK Request result code

ResultMessage String param is invalid Error description

PushResult JSON Request result

Success boolean true
Request status. The value of
 Success is contained in the
 PushRresult JSON string.

ResultMsg String param is invalid
Error content. The value of
 ResultMsg is contained in the
 PushRresult JSON string.

Data String
903bf653c1b5442
b9ba07684767bf9
c2

Scheduled push task ID. When
 strategyType is not 0, this field is

not empty.

Java sample codeJava sample code
Click here for information about how to obtain the AccessKey ID and AccessKey secret in the following
sample code.

Message Push Service User Guide··API reference

> Document Version: 20230208 115

 DefaultProfile.addEndpoint("cn-hongkong", "mpaas", "mpaas.cn-hongkong.aliyuncs.com");
 // Create a DefaultAcsClient instance and initialize it
 DefaultProfile profile = DefaultProfile.getProfile(
 "cn-hangzhou", // Region ID
 "******", // The AccessKey ID of the RAM account
 "******"); // he AccessKey secret of the RAM account

 IAcsClient client = new DefaultAcsClient(profile);
 // Create an API request and set parameters
 PushMultipleRequest request = new PushMultipleRequest();
 request.setAppId("ONEX570DA89211721");
 request.setWorkspaceId("test");
 request.setDeliveryType(3L);
 request.setTaskName("multipleTest");
 request.setTemplateName("testTemplate");
 // Hello #name#. Congratulations to you for winning RMB #money#.
 List<PushMultipleRequest.TargetMsg> targetMsgs = new ArrayList<PushMultipleRequest.
TargetMsg>();
 PushMultipleRequest.TargetMsg targetMsg = new PushMultipleRequest.TargetMsg();
 targetMsg.setTarget("userid1024");
 targetMsg.setMsgKey(String.valueOf(System.currentTimeMillis()));
 Map<String, String> templatekv = new HashMap<String, String>();
 templatekv.put("name", "Bob");
 templatekv.put("money", "200");
 targetMsg.setTemplateKeyValue(JSON.toJSONString(templatekv));
 // The number of TargetMsg objects can be up to 400
 targetMsgs.add(targetMsg);
 request.setTargetMsgs(targetMsgs);
 request.setExpiredSeconds(600L);

 request.setStrategyType(2);
 request.setStrategyContent("{\"fixedTime\":1630303126000,\"startTime\":162567360000
0,\"endTime\":1630303126000,\"circleType\":1,\"circleValue\":[1, 7],\"time\":\"13:45:11\"}"
);

 PushMultipleResponse response;
 try {
 response = client.getAcsResponse(request);
 System.out.println(response.getResultCode());
 System.out.println(response.getResultMessage());
 System.out.println(response.getPushResult().getData()); // Push task ID or sch
eduled push task ID
 } catch (ClientException e) {
 e.printStackTrace();
 }

Python sample codePython sample code

Message Push Service User Guide··API reference

> Document Version: 20230208 116

-*- coding: utf8 -*-
from aliyunsdkcore.client import AcsClient
from aliyunsdkmpaas.request.v20190821 import PushMultipleRequest
import json
import time

Initialize AcsClient instance
client = AcsClient(
 "AccessKey ID",
 "AccessKey Secret",
 "cn-hongkong"
);

Initialize a request and set parameters
request = PushMultipleRequest.PushMultipleRequest()
request.set_endpoint("mpaas.cn-hongkong.aliyuncs.com")
request.set_AppId("ONEX570DA89211721")
request.set_WorkspaceId("test")
request.set_TemplateName("template1024")
request.set_DeliveryType(3)
request.set_TaskName("The test task of Python template push")
request.set_ExpiredSeconds(600)
msgkey = str(time.time())
targets = [
 {
 "Target": "user1024",
 "MsgKey": msgkey,
 "TemplateKeyValue": {
 "name": "Bob",
 "money": "200"
 }
 }
]
request.set_TargetMsgs(targets)
Print response
response = client.do_action_with_exception(request)
print response

Node.js sample codeNode.js sample code

Message Push Service User Guide··API reference

> Document Version: 20230208 117

const sdk = require('@alicloud/mpaas20190821');

const { default: Client, PushMultipleRequest,PushMultipleRequestTargetMsg } = sdk;
// Create a client
const client = new Client({
 accessKeyId: 'accessKeyId',
 accessKeySecret: 'AccessKey Secret',
 endpoint: 'mpaas.cn-hongkong.aliyuncs.com',
 apiVersion: '2019-08-21'
});
// Initialize request
 const request = new PushMultipleRequest();
 request.appId = "ONEX570DA89211721";
 request.workspaceId = "test";
 request.templateName= "template1024";
 const templatekv = {
 name: 'Bob',
 money:'300'
 };
 //request.templateKeyValue = JSON.stringify(templatekv);

 request.deliveryType = 3;
 request.taskName = "Node test task";
 request.expiredSeconds=600;
 const extendedParam = {
 test: 'Custom extension parameter'
 };
 request.extendedParams = JSON.stringify(extendedParam);

 const targetMsgkey = new PushMultipleRequestTargetMsg();
 targetMsgkey.target = "userid1024";
 targetMsgkey.msgKey = String(new Date().valueOf());
 targetMsgkey.templateKeyValue = JSON.stringify(templatekv);;
 request.targetMsg = [targetMsgkey];

// Call the API operation.
try {
 client.pushMultiple(request).then(res => {
 console.log('SUCCESS', res);
 }).catch(e => {
 console.log('FAIL', e);
 });
} catch(e) {
 console.log('ERROR', e);
}

PHP sample codePHP sample code

Message Push Service User Guide··API reference

> Document Version: 20230208 118

<?php

use AlibabaCloud\Client\AlibabaCloud;
use AlibabaCloud\MPaaS\MPaaS;
AlibabaCloud::accessKeyClient('accessKeyId', 'accessKeySecret')
 ->regionId('cn-hongkong')
 ->asDefaultClient();

class Demo {
 public function run() {
 try {
 $this->multiPush();
 } catch (\Exception $e) {
 }
 }

 public function multiPush() {
 $request = MPaaS::v20190821()->pushMultiple();
 $result = $request->host("mpaas.cn-hongkong.aliyuncs.com")
 // Specify whether to enable the debug mode
 ->debug(true)
 ->withAppId("ONEX570DA89211721")
 ->withWorkspaceId("test")
 ->withTemplateName("template1024")
 ->withDeliveryType(3)
 ->withTaskName("The test task of PHP multiple push")
 ->withExpiredSeconds(600)
 ->withTargetMsg(
 [
 [
 "Target" => "userid1024",
 "MsgKey" => "" . time(),
 "TemplateKeyValue" => json_encode([
 "name" => "Bob",
 "money" => "200",
])
]
]
)
 ->request();
 }
}

Push message - broadcast pushPush message - broadcast push
You can call this interface to push the same message to all devices. The message is created based on a
template.

Before you call the interface, ensure that you have completed the following operations:

You have created a template in the MPS console, and the template contains placeholders. Otherwise,
you cann’t implement personalized message push, that is, push different messages to different
target IDs. For more information, see Create a template.

Message Push Service User Guide··API reference

> Document Version: 20230208 119

You have introduced the required dependencies. For more information, see SDK preparations.

Request parametersRequest parameters

ParamParam
et eret er

Dat aDat a
t ypet ype

RequirRequir
eded ExampleExample Descript ionDescript ion

classific
ation

String No 1

Indicates the type of the messages pushed
through vivo push channel:

0 - Operational message

1 - System message

If not filled, it defaults to 1.

taskNa
me

String Yes broadcastTest The name of push task

appId String Yes
ONEX570DA8921172
1

mPaaS app ID

workspa
ceId

String Yes test mPaaS workspace

delivery
Type

Long Yes 1

The type of target ID. Valid values:

1 - Android broadcast

2 - iOS broadcast

msgkey String Yes 1578807462788
The ID of business message. The ID is used for
message troubleshooting. The ID is user
defined and must be unique.

expiredS
econds

Long Yes 300 The validity period of message, in seconds.

templat
eName

String Yes broadcastTemplate Template name. The template can be created
in the MPS console.

Message Push Service User Guide··API reference

> Document Version: 20230208 120

templat
eKeyVal
ue

String No
{“content”:”Anno
uncement”}

The parameters of template, in the map
format. The parameters depend on the
template specified by templateName . Key
refers to the placeholder while value refers to
the specific value that is used to replace the
placeholder.

pushSta
tus

Long No 0

Login status:

0 - Login users (default)

1 - All users (including login and logout
users)

2 - Logout users

bindPeri
od

int No

Login period, required when the value of
 pushStatus is 0:

1 - Login users in recent 7 days

2 - Login users in recent 15 days

3 - Login users in recent 60 days

4 - Permanent

Not eNot e

The bindPeriod parameter is only
configurable in non-financial
environment.

unBindP
eriod

Long No

Logout period, required when the value of
 pushStatus is 1 or 2:

1 - Logout users in recent 7 days

2 - Logout users in recent 15 days

3 - Logout users in recent 60 days

4 - Permanent

ParamParam
et eret er

Dat aDat a
t ypet ype

RequirRequir
eded ExampleExample Descript ionDescript ion

Message Push Service User Guide··API reference

> Document Version: 20230208 121

android
Channel

Integer No

Android message channel:

transparent - MPS self-built channel

notify - Default channel

strategy
Type

int No 1

Push strategy:

0 - Immediately

1 - Scheduled

2 - Cyclic

It is 0 by default.

Strategy
Content

String No

Push strategy details (JSON string). This
parameter is required when the value of
 strategyType is not 0. See the following

description of the StrategyContent fields.

ParamParam
et eret er

Dat aDat a
t ypet ype

RequirRequir
eded ExampleExample Descript ionDescript ion

StrategyContent fieldsStrategyContent fields
JSON value is converted to String and passed in.

ParamParam
et eret er

Dat aDat a
t ypet ype

RequirRequir
eded ExampleExample Descript ionDescript ion

fixedTi
me

long No 1630303126000

Scheduled push timestamp (in ms, accurate
to second).

When the push strategy is T imed (the value of
 strategyType is 1), fixedTime is

required.

startT im
e

long No 1640966400000

Cycle period start t imestamp (in ms, accurate
to day).

When the push strategy is Cyclic (the value of
 strategyType is 2), startTime is

required.

Message Push Service User Guide··API reference

> Document Version: 20230208 122

endTim
e

long No 1672416000000

Cycle period end timestamp (in ms, accurate
to day). The end time cannot exceed 180 days
after the current day.

When the push strategy is Cyclic (the value of
 strategyType is 2), endTime is

required.

circleTy
pe

int No 3

Loop type:

1 - Daily

2 - Weekly

3 - Monthly

When the push strategy is Cyclic (the value of
 strategyType is 2), circleType is

required.

circleVal
ue

int[] No [1,3]

Cycle value:

If the loop type is daily: Empty

If the loop type is weekly: Set the cyclic
push time every week. For example,
 [1,3] means pushing the message

every Monday and Wednesday.

If the loop type is monthly: Set the cyclic
push time every month. For example,
 [1,3] means pushing the message on

the 1st and 3rd day every month.

When the push strategy is Cyclic (the value of
 strategyType is 2 and the value of
 circleType is not daily), circleValue

is required.

time String No 09:45:11

Cyclic push time (t ime format: HH:mm:ss).

When the push strategy is Cyclic (the value of
 strategyType is 2), time is required.

ParamParam
et eret er

Dat aDat a
t ypet ype

RequirRequir
eded ExampleExample Descript ionDescript ion

Message Push Service User Guide··API reference

> Document Version: 20230208 123

Not eNot e

The upper limit of unexecuted t imed or cyclic push tasks is 100 by default .

The cycle period is from 00:00 at the start date to 24:00 at the end date.

Neither the cycle start t ime nor the end t ime can be earlier than 00:00 of the day, and the
end t ime cannot be earlier than the start t ime.

Response parametersResponse parameters

ParametParamet
erer

Dat aDat a
t ypet ype ExampleExample Descript ionDescript ion

RequestId String
B589F4F4-CD68-3CE5-
BDA0-
6597F33E23916512

Request ID

ResultCod
e

String OK Request result code

ResultMes
sage

String param is invalid Error description

PushResul
t

JSON Request result

Success boolean true
Request status. The value of Success is
contained in the PushRresult JSON string.

ResultMsg String param is invalid
Error content. The value of ResultMsg is
contained in the PushRresult JSON string.

Data String
903bf653c1b5442b9ba0
7684767bf9c2

Scheduled push task ID. When strategyType is
not 0, this field is not empty.

Java sample codeJava sample code
Click here for information about how to obtain the AccessKey ID and AccessKey secret in the following
sample code.

Message Push Service User Guide··API reference

> Document Version: 20230208 124

DefaultProfile.addEndpoint("cn-hongkong", "mpaas", "mpaas.cn-hongkong.aliyuncs.com");
 // Create a DefaultAcsClient instance and initialize it
 DefaultProfile profile = DefaultProfile.getProfile(
 "cn-hangzhou", // Region ID
 "******", // The AccessKey ID of the RAM account
 "******"); // The AccessKey Secret of the RAM account

 IAcsClient client = new DefaultAcsClient(profile);

 PushBroadcastRequest request = new PushBroadcastRequest();
 request.setAppId("ONEX570DA89211720");
 request.setWorkspaceId("test");
 request.setDeliveryType(2L);
 request.setMsgkey(String.valueOf(System.currentTimeMillis()));
 request.setExpiredSeconds(600L);
 request.setTaskName("broadcastTest ");
 request.setTemplateName("broadcastTemplate ");
 // This is an announcement: #content#.
 Map<String, String> templatekv = new HashMap<String, String>();
 templatekv.put("content", " The content of the announcement ");
 request.setTemplateKeyValue(JSON.toJSONString(templatekv));

 request.setStrategyType(2);
 request.setStrategyContent("{\"fixedTime\":1630303126000,\"startTime\":162567360000
0,\"endTime\":1630303126000,\"circleType\":1,\"circleValue\":[1, 7],\"time\":\"13:45:11\"}"
);

 PushBroadcastResponse response;
 try {
 response = client.getAcsResponse(request);
 System.out.println(response.getResultCode());
 System.out.println(response.getResultMessage());
 System.out.println(response.getPushResult().getData()); // push task ID or sch
eduled task ID
 } catch (ClientException e) {
 e.printStackTrace();
 }

Python sample codePython sample code

Message Push Service User Guide··API reference

> Document Version: 20230208 125

-*- coding: utf8 -*-

from aliyunsdkcore.client import AcsClient
from aliyunsdkmpaas.request.v20190821 import PushBroadcastRequest
import json
import time

Initialize AcsClient instance
client = AcsClient(
 "AccessKey ID",
 "AccessKey Secret",
 "cn-hongkong"
);

Initialize a request and set parameters
request = PushBroadcastRequest.PushBroadcastRequest()
request.set_endpoint("mpaas.cn-hongkong.aliyuncs.com")
request.set_AppId("ONEX570DA89211720")
request.set_WorkspaceId("test")
request.set_TemplateName("broadcastTemplate")
templatekv = {"content":"This is an announcement"}
request.set_TemplateKeyValue(json.dumps(templatekv))
request.set_DeliveryType(1)
request.set_TaskName("The test task of Python broadcast push")
request.set_ExpiredSeconds(600)
request.set_Msgkey(str(time.time()))

Print response
response = client.do_action_with_exception(request)
print response

Node.js sample codeNode.js sample code

Message Push Service User Guide··API reference

> Document Version: 20230208 126

const sdk = require('@alicloud/mpaas20190821');

const { default: Client, PushBroadcastRequest } = sdk;
// Create a client.
const client = new Client({
 accessKeyId: 'accessKeyId',
 accessKeySecret: 'AccessKey Secret',
 endpoint: 'mpaas.cn-hongkong.aliyuncs.com',
 apiVersion: '2019-08-21'
});
// Initialize the request.

 const request = new PushBroadcastRequest();
 request.appId = "ONEX570DA89211720";
 request.workspaceId = "test";
 request.templateName= "broadcastTemplate";
 const templatekv = {
 content: 'This is an announcement',
 };
 request.templateKeyValue = JSON.stringify(templatekv);
 request.deliveryType = 1;
 request.taskName = "Node test task";
 request.expiredSeconds=600;
 const extendedParam = {
 test: 'Custom extension parameter'
 };
 request.extendedParams = JSON.stringify(extendedParam);

 request.msgkey = String(new Date().valueOf())

// Call the API operation.
try {
 client.pushBroadcast(request).then(res => {
 console.log('SUCCESS', res);
 }).catch(e => {
 console.log('FAIL', e);
 });
} catch(e) {
 console.log('ERROR', e);
}

PHP sample codePHP sample code

Message Push Service User Guide··API reference

> Document Version: 20230208 127

<?php

use AlibabaCloud\Client\AlibabaCloud;
use AlibabaCloud\MPaaS\MPaaS;
AlibabaCloud::accessKeyClient('accessKeyId', 'accessKeySecret')
 ->regionId('cn-hongkong')
 ->asDefaultClient();

class Demo {
 public function run() {
 try {
 $this->broadcastPush();
 } catch (\Exception $e) {
 }
 }

 public function broadcastPush(){
 $request = MPaaS::v20190821()->pushBroadcast();
 $result = $request->host("mpaas.cn-hongkong.aliyuncs.com")
 // Specify whether to enable the debug mode.
 ->debug(true)
 ->withAppId("ONEX570DA89211720")
 ->withWorkspaceId("test")
 ->withTemplateName("broadcastTemplate")
 ->withTemplateKeyValue(
 json_encode(["content" => "This is an announcement"])
)
 ->withDeliveryType(1)
 ->withTaskName("The test task of PHP broadcast push")
 ->withExpiredSeconds(600)
 ->withMsgkey("". time())
 ->request();
 }
}

Revoke messagesRevoke messages
Messages pushed through simple push or template push can be withdrawn through message ID;
messages pushed through the mult iple push or broadcast push can be withdrawn through task ID. Only
the messages pushed in recent 7 days can be revoked.

Revoke by message IDRevoke by message ID
Revoke the messages pushed through simple push mode or template push mode.

Request parametersRequest parameters

Message Push Service User Guide··API reference

> Document Version: 20230208 128

ParamParam
et eret er

Dat aDat a
t ypet ype

RequirRequir
eded ExampleExample Descript ionDescript ion

messag
eId

String Yes 1578807462788
Message ID in business system, which can be
customized by users and is used to uniquely
identify the message in the business system.

targetId String Yes user1024

Target ID. If the message was pushed by
device, then the target ID refers to device ID;
if the message was pushed by user, then the
target ID refers to user ID.

Response parametersResponse parameters

ParametParamet
erer

Dat aDat a
t ypet ype ExampleExample Descript ionDescript ion

RequestId String
B589F4F4-CD68-3CE5-
BDA0-
6597F33E23916512

Request ID

ResultCod
e

String OK Request result code

ResultMes
sage

String param is invalid Error description

PushResul
t

JSON Request result

Success boolean true
Request status. The value of Success is
contained in the PushRresult JSON string.

ResultMsg String param is invalid
Error content. The value of ResultMsg is
contained in the PushRresult JSON string.

Sample codeSample code

Message Push Service User Guide··API reference

> Document Version: 20230208 129

DefaultProfile.addEndpoint("cn-hongkong", "mpaas", "mpaas.cn-hongkong.aliyuncs.com");
 // Create a DefaultAcsClient instance and initialize it
 DefaultProfile profile = DefaultProfile.getProfile(
 "cn-hangzhou", // Region ID
 "******", // The AccessKey ID of the RAM account
 "******"); // The AccessKey Secret of the RAM account

 IAcsClient client = new DefaultAcsClient(profile);

 RevokePushMessageRequest request = new RevokePushMessageRequest();
 request.setAppId("ONEX570DA89211720");
 request.setWorkspaceId("test");
 request.setMessageId("console_1624516744112"); // Message ID in business system
 request.setTargetId("mpaas_push_demo"); // Target ID

 RevokePushMessageResponse response;
 try {
 response = client.getAcsResponse(request);
 System.out.println(response.getResultCode());
 System.out.println(response.getResultMessage());
 } catch (ClientException e) {
 e.printStackTrace();
 }

Revoke by task IDRevoke by task ID
Revoke the messages pushed through mult iple push mode or broadcast push mode.

Request parametersRequest parameters

ParamParam
et eret er

Dat aDat a
t ypet ype

RequirRequir
eded ExampleExample ExampleExample

taskId String Yes 20842863
Push task ID, which can be used to query push
tasks in the MPS console.

Response parametersResponse parameters

Paramet erParamet er Dat a t ypeDat a t ype ExampleExample Descript ionDescript ion

RequestId String

B589F4F4-CD68-
3CE5-BDA0-
6597F33E2391651
2

Request ID

ResultCode String OK Request result code

Message Push Service User Guide··API reference

> Document Version: 20230208 130

ResultMessage String param is invalid Error description

PushResult JSON Request result

Success boolean true
Request status. The value of
 Success is contained in the
 PushRresult JSON string.

ResultMsg String param is invalid
Error content. The value of
 ResultMsg is contained in the
 PushRresult JSON string.

Paramet erParamet er Dat a t ypeDat a t ype ExampleExample Descript ionDescript ion

Sample codeSample code

DefaultProfile.addEndpoint("cn-hongkong", "mpaas", "mpaas.cn-hongkong.aliyuncs.com");
 // Create a DefaultAcsClient instance and initialize it
 DefaultProfile profile = DefaultProfile.getProfile(
 "cn-hangzhou", // Region ID
 "******", // The AccessKey ID of the RAM account
 "******"); // The AccessKey Secret of the RAM account

 IAcsClient client = new DefaultAcsClient(profile);

 RevokePushTaskRequest request = new RevokePushTaskRequest();
 request.setAppId("ONEX570DA89211720");
 request.setWorkspaceId("test");
 request.setTaskId("20842863"); // Push task ID

 RevokePushTaskResponse response;
 try {
 response = client.getAcsResponse(request);
 System.out.println(response.getResultCode());
 System.out.println(response.getResultMessage());
 } catch (ClientException e) {
 e.printStackTrace();
 }

Analyze message pushAnalyze message push

Query statistical dataQuery statistical data
Query message push stat ist ical data, including pushed messages, successfully pushed messages,
message arrivals, opened messages, and ignored messages.

Request parametersRequest parameters

Message Push Service User Guide··API reference

> Document Version: 20230208 131

ParamParam
et eret er

Dat aDat a
t ypet ype

RequirRequir
eded ExampleExample Descript ionDescript ion

appId String Yes
ONEX570DA8921172
1

mPaaS app ID

workspa
ceId

String Yes test mPaaS workspace

startT im
e

long Yes 1619798400000
The start t imestamp of the t ime period to be
queried, in milliseconds and accurate to day.

endTim
e

long Yes 1624358433000

The end timestamp of the t ime period to be
queried, in milliseconds and accurate to day.
The interval between the start t ime and end
time cannot exceed 90 days.

platfor
m

String No ANDROID

Push platform. It defaults to query all
platforms if no value is passed in.

Valid values: IOS, ANDROID

channel String No ANDROID

Push channel. It defaults to query all channels
if no value is passed in.

Valid values: IOS, FCM, HMS, MIUI, OPPO, VIVO,
ANDROID (self-built channel)

type String No SIMPLE

Push mode. It defaults to query all types if no
value is passed in.

Valid values: SIMPLE, TEMPLATE, MULTIPLE,
BROADCAST

taskId String No 20842863 Push task ID

Response parametersResponse parameters

ParametParamet
erer

Dat aDat a
t ypet ype ExampleExample Descript ionDescript ion

RequestId String
B589F4F4-CD68-3CE5-
BDA0-
6597F33E23916512

Request ID

Message Push Service User Guide··API reference

> Document Version: 20230208 132

ResultCod
e

String OK Request result code

ResultMes
sage

String param is invalid Error description

ResultCon
tent

JSON Response content

data JSON
Response content. The value of data is
contained in the ResultContent JSON string.

pushTotal
Num

float 100 The number of pushed messages

pushNum float 100 The number of successfully pushed messages

arrivalNu
m

float 100 The number of messages that arrive client

openNum float 100 The number of opened messages

openRate float 100 Message open rate

ignoreNu
m

float 100 The number of ignored messages

ignoreRat
e

float 100 Message ignorance rate

ParametParamet
erer

Dat aDat a
t ypet ype ExampleExample Descript ionDescript ion

Sample codeSample code

Message Push Service User Guide··API reference

> Document Version: 20230208 133

DefaultProfile.addEndpoint("cn-hongkong", "mpaas", "mpaas.cn-hongkong.aliyuncs.com");
 // Create a DefaultAcsClient instance and initialize it
 DefaultProfile profile = DefaultProfile.getProfile(
 "cn-hangzhou", // Region ID
 "******", // The AccessKey ID of the RAM account
 "******"); // The AccessKey Secret of the RAM account
 IAcsClient client = new DefaultAcsClient(profile);
 QueryPushAnalysisCoreIndexRequest request = new QueryPushAnalysisCoreIndexRequest()
;
 request.setAppId("ONEX570DA89211720");
 request.setWorkspaceId("test");
 request.setStartTime(Long.valueOf("1617206400000"));
 request.setEndTime(Long.valueOf("1624982400000"));
 request.setPlatform("ANDROID");
 request.setChannel("ANDROID");
 request.setType("SIMPLE");
 request.setTaskId("20842863");

 QueryPushAnalysisCoreIndexResponse response;
 try {
 response = client.getAcsResponse(request);
 System.out.println(response.getResultCode());
 System.out.println(response.getResultMessage());
 } catch (ClientException e) {
 e.printStackTrace();
 }

Query push tasksQuery push tasks
Query the mult iple/broadcast push tasks created on MPS console or triggered by calling API.

Request parametersRequest parameters

Paramet erParamet er Dat a t ypeDat a t ype RequiredRequired ExampleExample Descript ionDescript ion

appId String Yes
ONEX570DA89
211721

mPaaS app ID

workspaceId String Yes test mPaaS workspace

startT ime long Yes
161979840000
0

The start t imestamp of the t ime
period to be queried, in
milliseconds and accurate to day.

taskId String No 20842863 Push task ID

taskName String No Test task Task name

Message Push Service User Guide··API reference

> Document Version: 20230208 134

pageNumber int No 1 Page number, 1 by default.

pageSize int No 10
The total number of pages, 500
by default.

Paramet erParamet er Dat a t ypeDat a t ype RequiredRequired ExampleExample Descript ionDescript ion

Response parametersResponse parameters

Paramet erParamet er Dat a t ypeDat a t ype ExampleExample Descript ionDescript ion

RequestId String

B589F4F4-CD68-
3CE5-BDA0-
6597F33E2391651
2

Request ID

ResultCode String OK Request result code

ResultMessage String param is invalid Error description

ResultContent JSON Response content

data JSON
Response content. The value of data
is contained in the ResultContent
JSON string.

taskId String 20927873 Task ID

taskName String Test task Task name

templateId String 9108 Template ID

templateName String Test template Template name

type long 3

Push mode:

2 – Multiple push

3 – Broadcast push

Message Push Service User Guide··API reference

> Document Version: 20230208 135

gmtCreate long 1630052750000 Creation time

Paramet erParamet er Dat a t ypeDat a t ype ExampleExample Descript ionDescript ion

Sample codeSample code

DefaultProfile.addEndpoint("cn-hongkong", "mpaas", "mpaas.cn-hongkong.aliyuncs.com");
 // Create a DefaultAcsClient instance and initialize it
 DefaultProfile profile = DefaultProfile.getProfile(
 "cn-hangzhou", // Region ID
 "******", // The AccessKey ID of the RAM account
 "******"); // The AccessKey Secret of the RAM account
 IAcsClient client = new DefaultAcsClient(profile);

 QueryPushAnalysisTaskListRequest request = new QueryPushAnalysisTaskListRequest();
 request.setAppId("ONEX570DA89211721");
 request.setWorkspaceId("default");
 request.setStartTime(Long.valueOf("1617206400000"));
 request.setTaskId("20845212");
 request.setTaskName("Tesk task");
 request.setPageNumber(1);
 request.setPageSize(10);

 QueryPushAnalysisTaskListResponse response;
 try {
 response = client.getAcsResponse(request);
 System.out.println(response.getResultCode());
 System.out.println(response.getResultMessage());
 } catch (ClientException e) {
 e.printStackTrace();
 }

Query push task detailsQuery push task details
Query the details of mult iple/broadcast push tasks created on MPS console or triggered by calling API.

Request parametersRequest parameters

Paramet erParamet er Dat a t ypeDat a t ype RequiredRequired ExampleExample Descript ionDescript ion

appId String Yes
ONEX570DA89
211721

mPaaS app ID

workspaceId String Yes test mPaaS workspace

taskId String Yes 20842863 Push task ID

Message Push Service User Guide··API reference

> Document Version: 20230208 136

Response parametersResponse parameters

Paramet erParamet er Dat a t ypeDat a t ype ExampleExample Descript ionDescript ion

RequestId String

B589F4F4-CD68-
3CE5-BDA0-
6597F33E2391651
2

Request ID

ResultCode String OK Request result code

ResultMessage String param is invalid Error description

ResultContent JSON Response content

data JSON

Response content. The value of data
is contained in the ResultContent
JSON string.

taskId long 20927872 Task ID

pushNum float 10 The number of pushed messages

pushSuccessNum float 10
The number of successfully pushed
messages

pushArrivalNum float 10
The number of messages that arrive
client

startT ime long 1630052735000 Start t ime (ms)

endTime long 1630052831000 End time (ms)

duration string
00 hour 01 minute
36 seconds

Push duration

Sample codeSample code

Message Push Service User Guide··API reference

> Document Version: 20230208 137

DefaultProfile.addEndpoint("cn-hongkong", "mpaas", "mpaas.cn-hongkong.aliyuncs.com");
 // Create a DefaultAcsClient instance and initialize it
 DefaultProfile profile = DefaultProfile.getProfile(
 "cn-hangzhou", // Region ID
 "******", // The AccessKey ID of the RAM account
 "******"); // The AccessKey Secret of the RAM account
 IAcsClient client = new DefaultAcsClient(profile);

 QueryPushAnalysisTaskDetailRequest request = new QueryPushAnalysisTaskDetailRequest
();
 request.setAppId("ONEXPREF4F5C52081557");
 request.setWorkspaceId("default");
 request.setTaskId("20845212");

 QueryPushAnalysisTaskDetailResponse response;
 try {
 response = client.getAcsResponse(request);
 System.out.println(response.getResultCode());
 System.out.println(response.getResultMessage());
 } catch (ClientException e) {
 e.printStackTrace();
 }

Manage scheduled push tasksManage scheduled push tasks

Query scheduled push tasksQuery scheduled push tasks
Query the created scheduled push tasks, including t imed and cyclic push tasks.

Request parametersRequest parameters

Paramet erParamet er Dat a t ypeDat a t ype RequiredRequired ExampleExample Descript ionDescript ion

appId String Yes
ONEX570DA89
211721

mPaaS app ID

workspaceId String Yes test mPaaS workspace

startT ime long Yes
161979840000
0

The start t imestamp when the
scheduled push is triggered, not
the task creation time.

endtT ime long Yes
163042560000
0

The end timestamp when the
scheduled push is triggered.

Message Push Service User Guide··API reference

> Document Version: 20230208 138

type int No 0

Push mode:

0 - Simple push

1 – Template push

2 – Multiple push

3 – Broadcast push

uniqueId String No
49ec0ed5a2a6
42bcbe139a2d
7a419d6d

The unique ID of the scheduled
push task.

If you pass the master task ID,
then the information of all sub
tasks will be returned. If you pass
the sub task ID, then the
corresponding sub task
information will be returned.

pageNumber int No 1 Page number, 1 by default.

pageSize int No 10
The total number of pages, 500
by default.

Paramet erParamet er Dat a t ypeDat a t ype RequiredRequired ExampleExample Descript ionDescript ion

Response parametersResponse parameters

Paramet erParamet er Dat a t ypeDat a t ype ExampleExample Descript ionDescript ion

RequestId String

B589F4F4-CD68-
3CE5-BDA0-
6597F33E2391651
2

Request ID

ResultCode String OK Request result code

ResultMessage String param is invalid
Error description

ResultContent JSON Response content

Message Push Service User Guide··API reference

> Document Version: 20230208 139

data JSON
Response content. The value of data
is contained in the ResultContent
JSON string.

totalCount int 10 Total amount

list JSONArray Task array

uniqueId String
56918166720e46e
1bcc40195c9ca71
db

Unique ID of the scheduled push task.

If the value of strategyType is 1,
it refers to the master task ID of t imed
task.

If the value of strategyType is 2,
it refers to the child task ID of cyclic
task.

parentId String
56918166720e46e
1bcc40195c9ca71
db

Master ID of the scheduled push task.

If the value of strategyType is 1,
it refers to the master task ID of t imed
task.

If the value of strategyType is 2,
it refers to the master task ID of cyclic
task.

pushTime Date 1630486972000 Scheduled push time

pushTitle String Test T itle of message

pushContent String Test text Body content of message

type int 0

Push mode:

0 - Simple push

1 – Template push

2 – Multiple push

3 – Broadcast push

Paramet erParamet er Dat a t ypeDat a t ype ExampleExample Descript ionDescript ion

Message Push Service User Guide··API reference

> Document Version: 20230208 140

deliveryType int 1

Push type:

1 - Android

2 - iOS

3 - UserId

strategyType int 1

Push strategy:

1 - Scheduled

2 - Cyclic

executedStatus int 0

Whether the task has been executed:

0 - No executed

1 - Executed

createType int 0

Task creation method:

0 - API

1 - Console

gmtCreate Date 1629971346000 Creation time

Paramet erParamet er Dat a t ypeDat a t ype ExampleExample Descript ionDescript ion

Sample codeSample code

Message Push Service User Guide··API reference

> Document Version: 20230208 141

DefaultProfile.addEndpoint("cn-hongkong", "mpaas", "mpaas.cn-hongkong.aliyuncs.com");
 // Create a DefaultAcsClient instance and initialize it
 DefaultProfile profile = DefaultProfile.getProfile(
 "cn-hangzhou", // Region ID
 "******", // The AccessKey ID of the RAM account
 "******"); // The AccessKey Secret of the RAM account
 IAcsClient client = new DefaultAcsClient(profile);

 QueryPushSchedulerListRequest request = new QueryPushSchedulerListRequest();
 request.setAppId("ONEXPREF4F5C52081557");
 request.setWorkspaceId("default");
 request.setStartTime(Long.valueOf("1625068800000"));
 request.setEndTime(Long.valueOf("1630425600000"));
 request.setType(0);
 request.setUniqueId("49ec0ed5a2a642bcbe139a2d7a419d6d");
 request.setPageNumber(1);
 request.setPageSize(10);

 QueryPushSchedulerListResponse response;
 try {
 response = client.getAcsResponse(request);
 System.out.println(response.getResultCode());
 System.out.println(response.getResultMessage());
 } catch (ClientException e) {
 e.printStackTrace();
 }

Cancel scheduled push tasksCancel scheduled push tasks
Cancel the scheduled push tasks (including cyclic push tasks) that haven’t been pushed. You can cancel
the tasks in batch.

Request parametersRequest parameters

ParameParame
t ert er

Dat aDat a
t ypet ype

RequireRequire
dd

ExampleExample Description

appId String Yes
ONEX570DA8921172
1

mPaaS app ID

workspa
ceId

String Yes test mPaaS workspace

type int No 0

Scheduled push task ID type. It is 0 by default.

0 - Master task ID, corresponding to
 parentId

1 - Sub task ID, corresponding to
 uniqueId

Message Push Service User Guide··API reference

> Document Version: 20230208 142

uniqueId
s

String Yes
714613eb,714613ec,
714613ed

The unique ID of the scheduled push task.
Multiple task IDs are separated with commas
(,). You can input 30 IDs at most.

Response parametersResponse parameters

ParametParamet
erer

Dat aDat a
t ypet ype ExampleExample Descript ionDescript ion

RequestId String
B589F4F4-CD68-3CE5-
BDA0-
6597F33E23916512

Request ID

ResultCod
e

String OK Request result code

ResultMes
sage

String param is invalid Error description

ResultCon
tent

String
{714613eb=1,714613ed
=0}

Cancellation result:

1 - Successful

0 - Failed

Sample codeSample code

Message Push Service User Guide··API reference

> Document Version: 20230208 143

DefaultProfile.addEndpoint("cn-hongkong", "mpaas", "mpaas.cn-hongkong.aliyuncs.com");
 // Create a DefaultAcsClient instance and initialize it
 DefaultProfile profile = DefaultProfile.getProfile(
 "cn-hangzhou", // Region ID
 "******", // The AccessKey ID of the RAM account
 "******"); // The AccessKey Secret of the RAM account
 IAcsClient client = new DefaultAcsClient(profile);

CancelPushSchedulerRequest request = new CancelPushSchedulerRequest();
 request.setAppId("ONEXPREF4F5C52081557");
 request.setWorkspaceId("default");
 request.setUniqueIds("49ec0ed5a2a642bcbe139a2d7a419d6d, 49ec0ed5a2a642bcbe139a2d7a4
19d6c");

 CancelPushSchedulerResponse response;
 try {
 response = client.getAcsResponse(request);
 System.out.println(response.getResultCode());
 System.out.println(response.getResultMessage());
 } catch (ClientException e) {
 e.printStackTrace();
 }

Extension parametersExtension parameters
Extension parameters are passed to the client with message body. You can define or process these
parameters.

Extension parameters include the following three types:

Syst em ext ension paramet ersSyst em ext ension paramet ers

These extension parameters are occupied by the system. Do not modify the values of these
parameters. System extension parameters include notifyType , action , silent , pushType ,
 templateCode , channel , and taskId .

Syst em ext ension paramet ers wit h some signif icanceSyst em ext ension paramet ers wit h some signif icance

Extension parameters of this type are occupied by the system. Each parameter has a specific
meaning. You can set the values of these extension parameters. The following table describes the
extension parameters with specific meanings:

KeyKey Descript ionDescript ion

sound
The custom ringtone of the message. The value of this parameter is
the path of the ringtone. This parameter only applies to Xiaomi
phones and iPhones.

Message Push Service User Guide··API reference

> Document Version: 20230208 144

badge

The badge of the app icon. Its value is a specific number. This
extension parameter will be passed to the client together with the
message body.

For Android devices, you need to implement the badge logic by
yourself.

For iOS devices, the system automatically implements the badge
logic. When a message is pushed to the target mobile phone, the
number that you specified in value appears in the badge of the
app icon.

mutable-content

Custom push ID of Apple Push Notification service (APNs). A push
notification carrying this parameter indicates the support of iOS 10
 UNNotificationServiceExtension . If the push notification not

carrying this parameter indicates a common push. Set the value to 1.

badge_add_num Number of added push badges for Huawei push channel.

badge_class
Activity class corresponding to the desktop icon for Huawei push
channel

big_text
Big text style. This parameter has a fixed value "1". Any other value is
invalid. This parameter is only valid for Xiaomi and Huawei devices.

KeyKey Descript ionDescript ion

User-def ined ext ension paramet ersUser-def ined ext ension paramet ers

All the parameters other than the preceding system extension parameters are user-defined extension
parameters. User-defined extension parameters are passed to the client together with a message
body. You can define and process these parameters.

Result codesResult codes

Result codeResult code MessageMessage Descript ionDescript ion

100 SUCCESS Succeeded

-1 SIGNATURE_MISMATCH Signature mismatched.

3001 NEED_DELIVERYTOKEN deliveryToken is empty.

3002 NEED_FILE The file is empty.

Message Push Service User Guide··API reference

> Document Version: 20230208 145

3003 NEED_APPID_WORKSPACEID The app ID or workspace is empty.

3007 APPID_WRONG Invalid app ID or workspace.

3008 OS_TYPE_NOT_SUPPORTED Push platform not supported.

3009 DELIVERY_TYPE_NOT_SUPPORTED deliveryType not supported.

3012 NEED_USERID UserId is empty.

3019 TASKNAME_NULL Task name is empty.

3020 EXPIREDSECONDS_WRONG Illegal message timeout length.

3021 TOKEN_OR_USERID_NULL Target is empty.

3022 TEMPLATE_NOT_EXIST Template doesn't exist.

3023 TEMPLATEKV_NOT_ENOUGH Template parameter mismatched.

3024 PAYLOAD_NOT_ENOUGH Title or content is empty.

3025 NEED_TEMPLATE Template is empty.

3026 EXPIREDTIME_TOO_LONG
The validity period of message is too
long.

3028 INVALID_PARAM Illegal parameter.

3029 SINGLE_PUSH_TARGET_TOO_MUCH Too many targets.

3030 BROADCAST_ONLY_SUPPORT_BY_DEVICE
Only broadcast push by device is
supported.

Result codeResult code MessageMessage Descript ionDescript ion

Message Push Service User Guide··API reference

> Document Version: 20230208 146

3031 REQUEST_SHOULD_BE_UTF8
The request body must be UTF-8
encoded.

3032 REST_API_SWITCH_NOT_OPEN The push API has been closed.

3033 UNKNOWN_REST_SIGN_TYPE Signature type not supported.

3035 EXTEND_PARAM_TO_MUCH
Too many extension parameters. A
maximum of 20 extension parameters
are allowed.

3036 TEMPLATE_ALREADY_EXIST The template already exists.

3037 TEMPLATE_NAME_NULL Template name is empty.

3038 TEMPLATE_NAME_INVALID Illegal template name.

3039 TEMPLATE_CONTENT_INVALID Illegal template content.

3040 TEMPLATE_TITLE_INVALID Illegal template t it le.

3041 TEMPLATE_DESC_INFO_INVALID Illegal template description.

3042 TEMPLATE_URI_INVALID Illegal template URI.

3043 SINGLE_PUSH_CONTENT_TOO_LONG Message body is too long.

3044 INVALID_EXTEND_PARAM Illegal extension parameter.

3049
MULTIPLE_INNER_EXTEND_PARAM_TO_MU
CH

The number of internal extension
parameters for multiple push cannot
exceed 10.

3050 MSG_PAYLOAD_TOO_LONG Message body is too long.

Result codeResult code MessageMessage Descript ionDescript ion

Message Push Service User Guide··API reference

> Document Version: 20230208 147

3051
BROADCAST_ALL_USER_NEED_UNBIND_PER
IOD

Unbinding parameters are required for
the broadcast push targeting at all users
(including both login and logout users).

3052 BROADCAST_ALL_USER_UNBIND_PERIOD_IN
VALID

Illegal unbinding parameters for
broadcast push.

3053
BROADCAST_ALL_USER_NOT_SUPPORT_SE
LFCHANNEL_ANDROID

MPS self-built push channel doesn't
supports the broadcast push targeting
at all users (including both login and
logout users).

3054 DELIVERYTOKEN_INVALID Illegal MPS self-built channel token.

3055 MULTIPLE_TARGET_NUMBER_TOO_MUCH
The number of push targets exceeds the
threshold.

3056 TEMPLATE_NUM_TOO_MUCH
The number of message templates
exceeds the threshold.

3057 ANDROID_CHANNEL_PARAM_INVALID Invalid androidChannel .

3058 BADGE_ADD_NUM_INVALID Invalid badge_add_num .

3059 BADGE_ADD_NUM_NEED_BADGE_CLASS

The parameter badge_class is
required for badge_add_num .

9000 SYSTEM_ERROR System error.

Result codeResult code MessageMessage Descript ionDescript ion

Message Push Service User Guide··API reference

> Document Version: 20230208 148

To ensure effect ive message delivery, you should create message push tasks with reference to the
message content limits for different push channels in the process of pushing messages.

To ensure effect ive message delivery, you should create message push tasks with reference to the
message content limits for different push channels in the process of pushing messages.

Android push channelAndroid push channel

Push channelPush channel Message t it le lengt h limitMessage t it le lengt h limit Message body lengt h limitMessage body lengt h limit

MPS self-built
channel

No limit No limit

Mi 50 characters 128 characters

Huawei 40 characters 1024 characters

OPPO 32 characters 200 characters

vivo 40 characters 100 characters

Not eNot e

Pushes through vendor channels will fail if corresponding length limits are exceeded.

Pushes through vendor channels will fail if the message t it le or content is empty.

For the pushes through Android push channel (no matter vendor channels or MPS self-built
channel), the size of the pushed message cannot exceed 2 KB.

iOS push channeliOS push channel

Push channelPush channel Message t it le lengt h limitMessage t it le lengt h limit Message body lengt h limitMessage body lengt h limit

APNs
40 characters, excess parts will be
displayed as an ellipsis.

Up to 110 characters will be displayed
in the Notification Center, and excess
parts will be displayed as an ellipsis.

Up to 110 characters will be displayed
when the phone screen is locked, and
excess parts will be displayed as an
ellipsis.

Up to 62 characters will be displayed
in the top pop-up window, and excess
parts will be displayed as an ellipsis.

Not e Not e For the pushes through iOS push channel, the size of the pushed message cannot
exceed 2 KB.

8.Message conent restrictions8.Message conent restrictions

Message Push Service User Guide··Message conent rest r
ict ions

> Document Version: 20230208 149

This topic summarizes the common problems that may appear in the process of integrating and using
Message Push Service, and provides the corresponding solut ions to solve those problems.

General questionsGeneral questions

Description on permissionsDescription on permissions
For Android 6.0 and later versions, users need to manually grant permissions to the phone, such as
reading/writ ing SD cards. To send messages more precisely, we recommend that developers provide a
guide to users on how to grant the required permissions for the notificat ions.

Logs cannot be printedLogs cannot be printed
For Meizu phones, if log.d and log.i cannot be printed, you can choose Set t ingsSet t ings >
Accessibilit y Opt ionsAccessibilit y Opt ions > Developer Opt ionsDeveloper Opt ions and turn on Advanced Log Out putAdvanced Log Out put .

In case of development issues, you can set tag=mpush to filter logs.

Android related questionsAndroid related questions

Port resolution problems in baseline versions 10.1.60.5 ~ 10.1.60.7Port resolution problems in baseline versions 10.1.60.5 ~ 10.1.60.7
In private cloud environments, for the message push using ports other than 443, the resolut ion of server
configurations will fail, and cause connection errors.

Solut ionSolut ion:

If you use the config file for packaging, modify the config file as follows:

 //Ignore the rest of the config file and add \\{white space} before the custom port num
ber.
 {
 "pushPort":"\\ 8000",
 }

If you do not use the config file for packaging, change the value of rome.push.port in
 AndroidManifest.xml as follows:

 //Add \{white space} before the port number.
 <meta-data
 android:name="rome.push.port"
 android:value="\ 8000" />

Failed to push messages after accessing Huawei, Xiaomi and otherFailed to push messages after accessing Huawei, Xiaomi and other
third-party channelsthird-party channels
You need to turn on the sett ings for the corresponding channels in the mPaaS Message Push Service
console. Refer to Code sample for sample code, usage and notes.

Notes on the generation of push ad-token (deviceId)Notes on the generation of push ad-token (deviceId)
The server generates deviceId with dependency on IMSI and IMEI. So, you are suggested guide the users
to grant the “READ_PHONE_STATE” permission.

9.FAQ9.FAQ

Message Push Service User Guide··FAQ

> Document Version: 20230208 150

https://github.com/mpaas-demo/android-push

Does message push on the notification bar have version restrictionsDoes message push on the notification bar have version restrictions
for EMUI and Huawei mobile services?for EMUI and Huawei mobile services?
There are version restrict ions for Emotion UI and Huawei mobile services. Emotion UI, EMUI for short, is an
emotional operating system based on Android and is developed by Huawei.

For detailed version requirements, see Condit ions for devices to receive Huawei notificat ions.

Cannot print logs for Huawei phonesCannot print logs for Huawei phones
In the dialing UI of the phone, enter *# *# 2846579# *# **# *# 2846579# *# * to enter ProjectProject menu > BackgroundBackground
set t ingsset t ings > LOG set t ingsLOG set t ings and select AP LogsAP Logs. After the phone restarts, Logcat will start to take
effect.

What should I do when my Huawei phone receives a push error code?What should I do when my Huawei phone receives a push error code?
For more information about error codes, see Client error code descript ion and Server error code
descript ion on Huawei official website.

Models and system versions supported by OPPO PushModels and system versions supported by OPPO Push
Currently, OPPO phone models running ColorOS 3.1 ColorOS 3.1 and newer systems, OnePlus 5/5TOnePlus 5/5T and newer
phone models, and all realmeall realme phone models are supported.

ColorOS is a highly-customized, efficient, intelligent, and richly-designed Android-based mobile OS by
OPPO.

What should I do when my OPPO phone receives a push error code?What should I do when my OPPO phone receives a push error code?
When OPPO push does not work, you can search for “OPPO onRegister error =” in client logs to obtain
the error code. Then find the corresponding causes by referring to OPPO error codes.

Models and system versions supported by vivo PushModels and system versions supported by vivo Push
The models and oldest system versions supported by vivo Push are listed in the following table. For
other questions on vivo push, see vivo Push FAQs.

Message Push Service User Guide··FAQ

> Document Version: 20230208 151

https://developer.huawei.com/consumer/cn/doc/development/HMS-Guides/push-faq-v4
https://developer.huawei.com/consumer/en/doc/development/HMSCore-References-V5/error-code-0000001050255690-V5
https://developer.huawei.com/consumer/en/doc/development/HMSCore-References-V5/https-send-api-0000001050986197-V5#EN-US_TOPIC_0000001134031085__section13968115715131
https://open.oppomobile.com/wiki/doc#id=10196
https://dev.vivo.com.cn/documentCenter/doc/156#w1-08608733

What should I do when my vivo phone receives a push error code?What should I do when my vivo phone receives a push error code?
When vivo Push does not work, you can search for "fail to turn on vivo Push state =" in client logs to
obtain the status code and find the specific causes by referring to Public status codes.

Troubleshooting procedure for common Android problemsTroubleshooting procedure for common Android problems
1. Check whether the Manifest f ile is configured correctly.

2. Check whether the appId (Huawei, Xiaomi, or vivo), appSecret (Xiaomi or OPPO), appKey (OPPO or
vivo), and ALIPUSH_APPID (mPaaS) are consistent with the app registrat ion information on the
corresponding development platform.

3. Check the Logcat logs tagged as mpush.

iOS related questionsiOS related questions

Whether there will be a banner or sound alert for messages when theWhether there will be a banner or sound alert for messages when the
app runs in the foregroundapp runs in the foreground

Message Push Service User Guide··FAQ

> Document Version: 20230208 152

https://dev.vivo.com.cn/documentCenter/doc/232

The default mechanism for Apple is that when an app is in foreground, the messages can arrive but will
be not shown. In order to show messages in foreground, you need to implement it manually.

Message status is NoBindInfoMessage status is NoBindInfo
NoBindInfo means the user pushes messages by UserId, but no corresponding information is found
based on the UserId. Please check if the client has called the binding API, and if the corresponding appId
and workspaceId are consistent.

Message status is BadDeviceTokenMessage status is BadDeviceToken
This status will only appear for iOS pushes, indicating that the actually pushed token is invalid. First ,
check if the environment of the cert if icate is correct.

If the app is packaged with a development cert if icate, the push console configuration requires a
development environment cert if icate, while Xcode requires a developer cert if icate for debugging in
real devices.

If the app is packaged with a production cert if icate, the push console configuration requires a
production environment cert if icate.

Message status is DeviceTokenNotForTopicMessage status is DeviceTokenNotForTopic
This status will only appear for iOS pushes, indicating that the token is inconsistent with the BundleId of
the cert if icate used in the push. Please check if the cert if icate is correct and if the BundleId of the
cert if icate is consistent with the BundleId used in client packaging.

The iOS phone cannot receive messages, but the message status isThe iOS phone cannot receive messages, but the message status is
ACKEDACKED
For iOS pushes, if the message status is ACKED, it means that the message has been successfully pushed
to Apple Push Notificat ion service. Please check if the push permission is enabled and whether you have
switched the app to the background.

The default mechanism for Apple is that when an app is in foreground, the messages can arrive but will
be not shown. In order to show messages in foreground, you need to implement it mannually.

RPC call exceptionsRPC call exceptions
If an exception occurs when you call a resource through a remote procedure call (RPC) request,
troubleshoot the problem with reference to Security Guard error codes or Gateway result codes.

Message Push Service User Guide··FAQ

> Document Version: 20230208 153

To send messages to an iOS device, you need to configure the iOS push cert if icate in the Message Push
Service (MPS) console. iOS push cert if icate is used for message push. This topic describes types of
cert if icates supported by the Message Push Service and the method of preparing a cert if icate.

Certificate typesCertificate types
Message Push Service only supports the Apple Push Service cert if icate. To learn more about Apple
cert if icate types and related descript ion, see Cert if icate type.

It is easy to confuse the Apple Push Service cert if icate with iOS Development cert if icate. Using iOSiOS
DevelopmentDevelopment cert if icate may cause message push failure. The following sect ions describe how to
dist inguish between the two cert if icates through Key Store MAC and Message Push Service console.

Cert if icat e t ypeCert if icat e t ype PurposePurpose

Apple Push Service
It is the Apple push certificate for production environment. It is used to
establish connectivity between your notification service and APNs to
deliver remote notifications to your app.

iOS Development
It is the Apple push certificate for development environment. It is used
during development and testing.

MAC Key StoreMAC Key Store
Double-click the exist ing .p12 cert if icate and import the cert if icate into the MAC Keychain. The
cert if icate information such as the name is displayed.

Among the cert if icates:

iPhone DeveloperiPhone Developer: Apple development cert if icate that is not supported by Message Push Service.

Apple Push ServicesApple Push Services: Apple push cert if icate for the production environment that is supported by
Message Push Service.

Apple Development IOS Push ServicesApple Development IOS Push Services: Apple push cert if icate for the development environment
that is supported by Message Push Service.

MPS consoleMPS console
After the cert if icate is imported into the Message Push Service console, the following cert if icate
information is displayed.

10.Appendix10.Appendix
10.1. Create an iOS push certificate10.1. Create an iOS push certificate

Message Push Service User Guide··Appendix

> Document Version: 20230208 154

https://help.apple.com/xcode/mac/current/#/dev80c6204ec

Check the subject DNsubject DN attribute.

Apple Development IOS Push ServicesApple Development IOS Push Services: Apple push cert if icate for the development environment
that is supported by Message Push Service.

Apple Push ServiceApple Push Service: Apple push cert if icate for the production environment that is supported by
Message Push Service.

In the preceding figure, the subject DNsubject DN attribute is iPhone DeveloperiPhone Developer, indicating that it is an Apple
development cert if icate, which is not supported by Message Push Service.

Prepare a certificatePrepare a certificate

Create an iOS app IDCreate an iOS app ID
1. On Apple Developer, click App IDsApp IDs in the left navigation pane, and click ++ in the upper right corner.

2. Enter the basic information.

App ID Descript ionApp ID Descript ion > NameName

App ID Suf f ixApp ID Suf f ix > Bundle IDBundle ID (The Bundle ID must be unique.)

3. Check Push Not if icat ionsPush Not if icat ions.

Message Push Service User Guide··Appendix

> Document Version: 20230208 155

4. Click Cont inueCont inue, and click Regist erRegist er. An iOS app ID is created.

Prepare a .certSigningRequest filePrepare a .certSigningRequest file
1. Access the MAC Keychain.

2. Request a cert if icate, choose Keychain AccessKeychain Access > Cert if icat e Assist antCert if icat e Assist ant > Request a Cert if icat eRequest a Cert if icat e
From a Cert if icat e Aut horit y…From a Cert if icat e Aut horit y….

3. In the Cert if icat e Inf ormat ionCert if icat e Inf ormat ion window, enter relevant information, such as the email address and
name, based on actual situations.

4. A .certSigningRequest f ile is successfully generated, as shown in the following figure.

Message Push Service User Guide··Appendix

> Document Version: 20230208 156

Create a certificateCreate a certificate
1. On the iOS App IDsiOS App IDs page, select your iOS app ID and click EditEdit .

2. Click Creat e Cert if icat eCreat e Cert if icat e under Development SSL Cert if icat eDevelopment SSL Cert if icat e or Product ion SSL Cert if icat eProduct ion SSL Cert if icat e to
create a cert if icate for the development or production environment.

Message Push Service User Guide··Appendix

> Document Version: 20230208 157

3. Upload the . certSigningRequest f ile that you have prepared.

4. After a cert if icate is created successfully, the following page is displayed. Click DownloadDownload to
download the .cer f ile.

Message Push Service User Guide··Appendix

> Document Version: 20230208 158

5. Convert the .cer f ile into a .p12 f ile.

i. Double-click the .cer f ile to import it into the MAC Key Store.

ii. Right-click the file that you have imported, and exportexport it . The file is exported as a . p12 f ile.

6. After obtaining the .p12 iOS push cert if icate, go to the mPaaS console, select the target App >
Message Push ServiceMessage Push Service > Push conf igurat ionPush conf igurat ion to configure it .

The following tables list the common status codes and the possible status codes for various push
channels.

Common status codes

Apple Push

Huawei Push

MiPush

OPPO Push

vivo Push

FCM

Common status codesCommon status codes

Status code Message Description

-1 WaitingForVerify Waiting for verification.

10.2. Message push status codes10.2. Message push status codes

Message Push Service User Guide··Appendix

> Document Version: 20230208 159

0
DeviceNotOnlineOrNoRespo
nse

Waiting for the device to go online (the persistent
connection between the target device and the message
push gateway is closed) or waiting for delivery confirmation.

1 NoBindInfo
There is no binding relationship. When you push a message
based on the user ID, make sure that the target user ID has
been bound with a device ID.

2 Acked

When you use an MPS self-built channel to push a message,
this status indicates that the message has been successfully
pushed to the client.

When you use a vendor push channel to push a message,
this status indicates that the vendor’s push gateway has
been successfully called.

99999999 NONE Unknown status.

Apple PushApple Push

Status code Message Description

2001 PayloadEmpty The message payload is empty.

2002 PayloadTooLarge The message payload is too large.

2003 BadTopic Incorrect bundleid in the certificate.

2004 TopicDisallowed Ilegal bundleid in the certificate.

2005 BadMessageId Incorrect messageId.

2006 BadExpirationDate Invalid expiration date.

2007 BadPriority Invalid priority.

2008 MissingDeviceToken Device token missed.

Message Push Service User Guide··Appendix

> Document Version: 20230208 160

2009 BadDeviceToken

The device token is invalid or in incorrect format, or it does
not exist. When you push a message based on the user
dimension and receive this status code, you need to check
whether the token used for binding is correct or not. We
recommend that you create a simple push message in the
MPS console as a test after completing the binding.

In the development environment (the console is configured
with a development environment certificate), you need to
use your personal development certificate to package the
app for testing. Otherwise, BadDeviceToken will appear.

2010 DeviceTokenNotForTopic The device token doesn't match the specified topic.

2011 Unregistered Invalid token.

2013 BadCertificateEnvironment The client certificate is for the wrong environment.

2014 BadCertificate The certificate is invalid.

2023 MissingTopic No topic is specified.

2024 ConnClosed

APNS disconnected. This status may caused by the
following reasons:

The iOS push environment configured in the console and
the pushed device token do not match.

The certificate packaged in the app's installation package
and the certificate configured in the console do not
match.

The BundleId in the project is different from the BundleId
configured in the console.

For more information about how to configure the iOS push
certificate, environment and BundleId in the console, see
Configure iOS push channel.

2025 ConnUnavailable APNS connection is unavailable.

For more message push statuses of Apple Push, see Handling Notificat ion Responses from APNs.

Huawei PushHuawei Push

Status code Description

Message Push Service User Guide··Appendix

> Document Version: 20230208 161

https://developer.apple.com/documentation/usernotifications/setting_up_a_remote_notification_server/handling_notification_responses_from_apns?spm=a2c4g.11186623.2.21.1dcb3ca8SiPhwL

100 Invaid unknown parameter.

101 Invaid API_KEY.

102 Invaid SESSION_KEY.

106 The app or session has no permission to call the current service.

107
Obtain the client and secret again (e.g., in case of an updated
algorithm).

109 Excessive nsp_ts difference

110 Interface internal exception.

111 Server is busy.

80000003 Terminal is not online.

80000004 The app has been uninstalled.

80000005 Response timed out.

80000006
No routing. No connection has been established between the terminal
and Push.

80000007
The terminal is in other region, and doesn't use Push in Chinese
mainland.

80000008
Incorrect routing. It may because that the terminal has switched the
Push server.

80100000 Some parameters are incorrect.

80100002 Ilegal token list.

80100003 Ilegal payload.

Message Push Service User Guide··Appendix

> Document Version: 20230208 162

80100004 Invalid t imeout period.

80300002 No permission to send messages to the tokens listed in the parameter.

80300007 All tokens in the request are illegal tokens.

81000001 Internal error.

80300008 Authentication error (the request message body is too large).

MiPushMiPush

Status code Description

1001 System error.

10002 Service suspended.

10003 Error in remote service.

10004 Cannot request this resource due to IP restriction.

10005 This resource requires authorized appkey.

10008 Incorrect parameters.

10009 The system is busy.

10012 Ilegal request.

10013 Ilegal user.

10014 Access to the app interface is restricted.

10017 Ilegal parameter value.

Message Push Service User Guide··Appendix

> Document Version: 20230208 163

10018 The request exceeds the length limit.

10022 Requests to the IP exceed the frequency limit.

10023 User's requests exceed the frequency limit.

10024 User's requests for special interface exceed the frequency limit.

10026 The app is in the blacklist, and cannot call any APIs.

10027 The app API is called too frequently.

10029 Illegal device.

21301 Authentication failed.

22000 Illegal app.

22001 The app doesn't exist.

22002 The app has been revocated.

22003 Failed to update the app.

22004 App information missed.

22005 Invalid app name.

22006 Invalid app ID.

22007 Invalid app Key.

22008 Invalid app Secret .

22020 Illegal app description.

Message Push Service User Guide··Appendix

> Document Version: 20230208 164

22021 The app hasn't been authorized by users.

22022 Invalid app package name.

22100 Incorrect data format for the app notification.

22101 Too many app notifications.

22102 Failed to send the app notification.

22103 Invalid app notification ID.

20301 Invalid target.

OPPO PushOPPO Push

Status code Message Description

-1 Service Currently Unavailable The service is unavailable, please try again later.

-2 Service in Flow Control The service is under traffic control.

11 Invalid Auth Token Invalid AuthToken.

13 App Call Limited
App calling counts exceed limit, including the calling
frequency limit.

14 Invalid App Key Invalid AppKey.

15 Missing App Key AppKey missed.

16 Invalid Signature Invalid signature. Failed to pass signature verification.

17 Missing Signature17 Signature missed. Failed to pass signature verification.

28 App Disabled The app is unavailable.

Message Push Service User Guide··Appendix

> Document Version: 20230208 165

29 Missing Auth Token AuthToken missed.

30 Api Permission Denied The app has no permission to perform API push.

10000 Invalid RegistrationId registration_id is in incorrect format.

vivo Pushvivo Push

Status code Description

10000 Permission authentication failed.

10040 The resouce has reached the upper limit, please try again later.

10050 Both alias and regId cannot be empty.

10055 The tit le cannot be empty.

10056 The tit le cannot exceed 40 characters in length.

10058 The content cannot exceed 100 characters in length.

10066 The number of custom key/value pairs cannot exceed 10.

10067 Invalid custom key/value pair.

10070 The total number of messages sent exceeds the limit.

10071 The sending time is out of the allowable t ime range.

10072 Message push is too fast, please try again later.

10101 The message content is unapproved.

10102 Unkown exception occured in vivo server.

Message Push Service User Guide··Appendix

> Document Version: 20230208 166

10103 Pushed content contains sensit ive information.

10110 Please set the frequency of sending commercial messages.

10302 Invalid regId.

10303 requestId already exists.

10104

Please send a formal message. Please check the content, and do not
send test text. The content in a formal message should not be
numbers only, letters only, symbols plus numbers, and cannot contain
"test", braces, and square brackets.

FCMFCM

Status code Message Description

90000002 InvalidRegistration Invalid target.

90000003 NotRegistered The target is unregistered.

90000004 InvalidPackageName Invalid package name.

90000007 MessageTooBig Message body is too large.

90000009 InvalidTtl Invalid offline t ime-to-live.

90000011 InternalServerError FCM service exception

90000401 Authentication Failed to pass permission verification.

Message Push Service User Guide··Appendix

> Document Version: 20230208 167

	1.About Message Push Service
	2.Terminology
	3.Message push process
	4.Client-side development
	4.1. Android
	4.1.1. Quick start
	4.1.2. Process notification clicks
	4.1.3. Integrate third-party push channels
	4.1.3.1. Integrate HUAWEI Push
	4.1.3.2. Integrate OPPO Push
	4.1.3.3. Integrate vivo Push
	4.1.3.4. Integrate MiPush
	4.1.3.5. Integrate FCM push channel

	4.1.4. Advanced functions

	4.2. iOS

	5.Server-side configuration
	6.Console operations
	6.1. Data overview
	6.2. Message management
	6.2.1. Create a message - Simple push
	6.2.2. Create a message – Multiple push
	6.2.3. Manage simple push messages
	6.2.4. Manage multiple push messages
	6.2.5. Manage scheduled push task

	6.3. Message templates
	6.3.1. Create a message template
	6.3.2. Manage message templates

	6.4. Message revocation
	6.5. User tag management
	6.6. Device status query
	6.7. Channel configuration
	6.8. Key management

	7.API reference
	7.1. Client APIs
	7.2. Server APIs

	8.Message conent restrictions
	9.FAQ
	10.Appendix
	10.1. Create an iOS push certificate
	10.2. Message push status codes

